Asma e COVID-19: quem ganha o disputado território das vias aéreas inferiores

Autores

DOI:

https://doi.org/10.33448/rsd-v10i12.20110

Palavras-chave:

Asma; COVID-19; Vias aéreas inferiores; SARS-CoV-2.

Resumo

Entre os numerosos estudos publicados sobre a COVID-19 em um ano de pandemia, poucos listaram a asma como comorbidade, tornando, portanto, difícil tirar conclusões sólidas. A alergia respiratória e as exposições controladas a alérgenos estão associadas a reduções significativas na expressão da enzima conversora de angiotensina 2 (ACE2), receptor para a entrada do SARS-CoV-2 nas células humanas. Há uma hipótese de que pacientes com asma crônica, em função do perfil inflamatório do tipo 2, podem ser potencialmente resistentes a desenvolver um curso clínico grave da COVID-19. A baixa resposta mediada por IFN-g no trato respiratório de pacientes asmáticos pode limitar a expressão de ACE2 nas células-alvo da infecção por SARS-CoV-2. O perfil inflamatório das vias aéreas em pacientes com asma crônica está relacionado principalmente a uma resposta Th2 na asma tipo 2, com produção de IL-4, IL-13 e IL-5, que apresentam relação antagônica com citocinas pró-inflamatórias como IFN-g, produzido em níveis elevados na COVID-19 grave. Os estudos publicados, em sua maioria, são retrospectivos e podem apresentar perda de informações ou material com possibilidades limitadas de uma análise mais robusta e conclusiva. É importante discutir como os pacientes com asma atópica ou não atópica parecem se proteger de novas infecções por coronavírus, e como a asma afeta COVID-19 e o curso da doença, uma vez que não há aumento da mortalidade em pacientes asmáticos com COVID-19 em comparação com não -pacientes asmáticos.

Referências

Ahmadpoor, P., & Rostaing, L. (2020). Why the immune system fails to mount an adaptive immune response to a COVID‐19 infection. Transplant International, 33(7), 824-825. https://doi.org/10.1111/tri.13611.

Alipoor, S.D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M. & Adcock, I. M. (2021). COVID-19: Molecular and Cellular Response. Front Cell Infect Microbiol, 11, 563085. https://doi.org/10.3389/fcimb.2021.563085.

Chhiba, K.D., Patel, G. B., Vu, T. H. T., Chen, M. M., Guo, A., Kudlaty, E., Mai, Q., Yeh, C., Muhammad, L. N., Harris, K. E., Bochner, B. S., Grammer, L. C., Greenberger, P. A., Kalhan, R., Kuang, F. L., Saltoun, C. A., Schleimer, R. P., Stevens, W. W., & Peters, A. T. (2020). Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J Allergy Clin Immunol, 146 (2), 307-314.e4. https://doi.org/10.1016/j.jaci.2020.06.010.

Chowdhury, S. D., & Oommen, A. M. (2020). Epidemiology of COVID-19. Journal of Digestive Endoscopy, 11(1), 3-7. https://doi.org/10.1055/s-0040-1712187.

Corrêa, E. J., Vasconcelos, M., & Souza, M. S. L. (2013). Iniciação à metodologia: textos científicos. NESCON UFMG.

Cucinotta, D., & Vanelli, M. (2020). WHO Declares COVID-19 a Pandemic. Acta Biomed, 91(1), 157-160. https://doi.org/10.23750/abm.v91i1.9397.

Gon, Y., & Hashimoto, S. (2018). Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergology International, 67(1), 12-17. https://doi.org/10.1016/j.alit.2017.08.011.

Green, I., Merzon, E., Vinker, S., Golan-Cohen, A., & Magen, E. (2021). COVID-19 Susceptibility in Bronchial Asthma. J Allergy Clin Immunol Pract, 9, 684-92. https://doi.org/10.1016/j.jaip.2020.11.020.

Hardyman, M. A., Wilkinson, E., Martin, E., Jayasekera, N. P., Blume, C., Swindle, E. J., Gozzard, N., Holgate, S. T., Howarth, P. H., Davies, D. E., & Collins, J. E. (2013). TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J Allergy Clin Immunol, 132(3), 665-675.e8. https://doi.org/10.1016/j.jaci.2013.03.005.

Hu, B., Guo, H., Zhou, P., & Shi, Z-L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, 19, 141–154. https://doi.org/10.1038/s41579-020-00459-7.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Bin, C. B. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 10223, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

Jackson, D. J., Busse, W. W., Bacharier, L. B., Kattan, M., O'Connor, G. T., Wood, R. A., Visness, C. M., Durham, S. R., Larson, D., Esnault, S., Ober, C., Gergen, P. J., Becker, P., Togias, A., Gern, J. E., & Altman, M. C. (2020). Association of respiratory allergy, asthma and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol, 146 (1), 203-206.e3. https://doi.org/10.1016/j.jaci.2020.04.009.

Janssen, N. A. F., Grondman, I., de Nooijer, A. H., Boahen, C. K., Koeken, V. A. C. M., Matzaraki, V., Kumar, V., He, X., Kox, M., Koenen, H. J. P. M., Smeets, R. L., Joosten, I., Brüggemann, R. J. M., Kouijzer, I. J. E., van der Hoeven, H. G., Schouten, J. A., Frenzel, T., Reijers, M. H. E., Hoefsloot, W., & van de Veerdonk, F. L. (2021). Dysregulated innate and adaptive immune responses discriminate disease severity in COVID-19. J Infect Dis, 1, jiab065. https://doi.org/10.1093/infdis/jiab065.

Lambrecht, B. N., & Hammad, H., & Fahy, J. V. (2019). The Cytokines of Asthma. Immunity, 50(4), 975-991. https://doi.org/10.1016/j.immuni.2019.03.018.

Liu, S., Zhi, Y., & Ying, S. (2020). COVID-19 and Asthma: Reflection During the Pandemic. Clinic Rev Allerg Immunol, 59, 78–88. https://doi.org/10.1007/s12016-020-08797-3.

Mendes, N. F., Jara, C. P., Mansour, E., Araújo, E. P., & Velloso, L. A. (2021). Asthma and COVID-19: a systematic review. Allergy Asthma Clin Immunol, 17 (5). https://doi.org/10.1186/s13223-020-00509-y.

Patel, S. J., & Teach, S. J. (2019). Asthma. Pediatrics in Review, 40(11), 549-567. https://doi.org/10.1542/pir.2018-0282.

Saatian, B., Rezaee, F., Desando, S., Emo, J., Chapman, T., Knowlden, S., & Georas, S. N. (2013). Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers, 1(2), e24333. https://doi.org/10.4161/tisb.24333.

Sami, R., Fathi, F., Eskandari, N., Ahmadi, M., ArefNezhad, R., & Motedayyen, H. (2021). Characterizing the immune responses of those who survived or succumbed to COVID-19: Can immunological signatures predict outcome? Cytokine, 140, 155439. https://doi.org/10.1016/j.cyto.2021.155439.

Skevaki, C., Karsonova, A., Karaulov, A., Xie, M., & Renz, H. (2020). Asthma-associated risk for COVID-19 development. J Allergy Clin Immunol, 146, 1295-301. https://doi.org/10.1016/j.jaci.2020.09.017.

World Health Organization (2020). Coronavirus disease (COVID-19) outbreak: rights, roles and responsibilities of health workers, including key considerations for occupational safety and health. https://www.who.int/publications-detail/coronavirus-disease-(covid-19)-outbreak-rights-roles-and-responsibilities-of-health-workers-including-keyconsiderations-for-occupational-safety-and-health.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X.

Zhang, J. J., Dong, X., Cao, Y. Y., Yuan, Y. D., Yang, Y. B., Yan, Y. Q., Akdis, C. A., & Gao, Y. D. (2020). Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 75(7), 1730-174. https://doi.org/10.1111/all.14238.

Downloads

Publicado

12/09/2021

Como Citar

FRAGA, T. de L. e .; PAULA JUNIOR, W. de; ANDRADE, M. C. Asma e COVID-19: quem ganha o disputado território das vias aéreas inferiores . Research, Society and Development, [S. l.], v. 10, n. 12, p. e17101220110, 2021. DOI: 10.33448/rsd-v10i12.20110. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20110. Acesso em: 17 jul. 2024.

Edição

Seção

Nota Prévia