Predição do ponto de impacto para rastreamento de foguetes usando os filtros α-β, Kalman padrão, Kalman estendido e Kalman sem cheiro: uma análise comparativa

Autores

DOI:

https://doi.org/10.33448/rsd-v9i3.2022

Palavras-chave:

Estimativa de estado; Algoritmo de rastreamento; Processamento digital de sinais; Previsão de pontos de impacto.

Resumo

Informações precisas sobre o ponto de impacto (PI) de um foguete suborbital na superfície da Terra durante um lançamento são requisitos importantes para operações de segurança dos sítos de lançamento. Quatro estimadores diferentes, como filtro α-β, filtro Kalman padrão (FKP), filtro Kalman estendido (FKE) e filtro Kalman sem cheiro (FKU), são considerados para o problema de rastreamento suborbital de foguetes, cujos dados são usados especificamente para melhorar a precisão da predição do PI (PPI) desses veículos. Este artigo apresenta uma análise comparativa entre os resultados dos estimadores. Os dados de voo de foguetes são analisados no sentido de demonstrar as vantagens e desvantagens dos estimadores e determinar as limitações inerentes à previsão dos efeitos aerodinâmicos encontrados em determinadas situações de voo. Discutimos o modelo matemático apropriado de um filtro capaz de executar o algoritmo em tempo real para as estimativas da posição e velocidade do alvo. Este trabalho utiliza dados reais de um sensor de radar para avaliar os algoritmos de rastreamento. Inserimos o resultado do filtro no modelo matemático desenvolvido para prever o PI do foguete na superfície da Terra. O principal objetivo deste estudo é avaliar o desempenho de quatro estimadores diferentes, quando aplicados especificamente na melhoria da PPI de foguetes suborbitais. É demonstrado que o FKU supera todos os outros algoritmos de rastreamento em termos de precisão e robustez da estimativa do PI.

Biografia do Autor

José Alano Peres de Abreu, Universidade Federal do Pará

Belém, Pará

Roberto Célio Limão de Oliveira, Universidade Federal do Pará

Belém, Pará

João Viana da Fonseca Neto, Universidade Federal do Maranhão

São Luís, MA

Referências

Markgraf, M., Montenbruck, O., Turner, P., & Viertotak, M. (2003). Instantaneous impact point prediction for sounding rockets-perspectives and limitations. In European Rocket and Balloon Programmes and Related Research (Vol. 530, pp. 141-146).

Montenbruck, O., Markgraf, M., Jung, W., Bull, B., & Engler, W. (2002). GPS based prediction of the instantaneous impact point for sounding rockets. Aerospace Science and Technology, 6(4), 283-294.

Ramachandra, K. V. (2018). Kalman filtering techniques for radar tracking. CRC Press.

Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.

Kosuge, Y., Ito, M., Okada, T., & Mano, S. (2002). Steady‐state errors of an α‐β‐γ filter for radar tracking. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 85(12), 65-79.

Ng, K. H., Yeong, C. F., Su, E. L. M., & Wong, L. X. (2012). Alpha beta gamma filter for cascaded PID motor position control. Procedia Engineering, 41, 244-250.

Tenne, D., & Singh, T. (2002). Characterizing performance of alpha-beta-gamma filters. IEEE Transactions on Aerospace and Electronic Systems, 38(3), 1072-1087.

Yadav, A., Naik, N., Ananthasayanam, M. R., Gaur, A., & Singh, Y. N. (2012). A constant gain Kalman filter approach to target tracking in wireless sensor networks. In 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS) (pp. 1-7). IEEE.

Abreu, J. A. P., Neto, J. V. F., & Oliveira, R. C. L. (2011). Ballistic rockets tracking: Kalman versus αβγ filters. In 2011 UkSim 13th International Conference on Computer Modelling and Simulation (pp. 313-318). IEEE.

Chui, C. K., & Chen, G. (2008). Kalman filtering with real time applications. Applied Optics, 28, 1841.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1), 35-45.

Welch, G., & Bishop, G. (2006). An introduction to the kalman filter. Chapel Hill, NC. USA, Tech. Rep.

Garcia, A., Yamanaka, S. S. C., Barbosa, A. N., Bizarria, F. C. P., Jung, W., & Scheuerpflug, F. (2011). VSB-30 sounding rocket: history of flight performance. Journal of Aerospace Technology and Management, 3(3), 325-330.

Einicke, G. A., & White, L. B. (1999). Robust extended Kalman filtering. IEEE Transactions on Signal Processing, 47(9), 2596-2599.

Farina, A., Ristic, B., & Benvenuti, D. (2002). Tracking a ballistic target: comparison of several nonlinear filters. IEEE Transactions on aerospace and electronic systems, 38(3), 854-867.

Biswas, S. K., Southwell, B., & Dempster, A. G. (2018). Performance analysis of Fast Unscented Kalman Filters for Attitude Determination. IFAC-PapersOnLine, 51(1), 697-701.

Garcia, R. V., Pardal, P. C. P. M., Kuga, H. K., & Zanardi, M. C. (2019). Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter. Advances in Space Research, 63(2), 1038-1050.

Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401-422.

Scardua, L. A., & da Cruz, J. J. (2016). Particle-Based Tuning of the Unscented Kalman Filter. Journal of Control, Automation and Electrical Systems, 27(1), 10-18.

Wan, E. A., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373) (pp. 153-158). Ieee.

Garcia, R. V., Kuga, H. K., & Zanardi, M. C. F. (2016). Unscented Kalman filter for determination of spacecraft attitude using different attitude parameterizations and real data. Journal of Aerospace Technology and Management, 8(1), 82-90.

Jung, J. K., & Hwang, D. H. (2013). The novel impact point prediction of a ballistic target with interacting multiple models. In 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013) (pp. 450-453). IEEE.

Wang, Z. Y., & Chang, S. J. (2013). Impact point prediction and analysis of lateral correction analysis of two-dimensional trajectory correction projectiles. Defence Technology, 9(1), 48-52.

Bozic, S. M. Digital and Kalman Filtering: An Introduction to Discrete-time Filtering and Optimal Linear Estimation. 1983.

AminiOmam, M., Torkamani-Azar, F., & Ghorashi, S. A. (2017). Generalised Kalman-consensus filter. IET Signal Processing, 11(5), 495-502.

Wu, C. M., Chang, C. K., & Chu, T. T. (2011). A new EP-based α–β–γ–δ filter for target tracking. Mathematics and Computers in simulation, 81(9), 1785-1794.

Greco, M. S., Abramovich, Y., Ovarlez, J. P., Li, H., & Yang, X. (2015). Introduction to the issue on advanced signal processing techniques for radar applications. IEEE Journal of Selected Topics in Signal Processing, 9(8), 1363-1365.

Gadsden, S. A., Dunne, D., Habibi, S. R., & Kirubarajan, T. (2009). Comparison of extended and unscented Kalman, particle, and smooth variable structure filters on a bearing-only target tracking problem. In Signal and Data Processing of Small Targets 2009 (Vol. 7445, p. 74450B). International Society for Optics and Photonics.

Van Der Merwe, R. (2004). Sigma-point Kalman filters for probabilistic inference in dynamic state-space models (Doctoral dissertation, OGI School of Science & Engineering at OHSU).

Wan, E. (2006). Sigma-point filters: an overview with applications to integrated navigation and vision assisted control. In 2006 IEEE Nonlinear Statistical Signal Processing Workshop (pp. 201-202). IEEE.

Downloads

Publicado

01/01/2020

Como Citar

ABREU, J. A. P. de; OLIVEIRA, R. C. L. de; NETO, J. V. da F. Predição do ponto de impacto para rastreamento de foguetes usando os filtros α-β, Kalman padrão, Kalman estendido e Kalman sem cheiro: uma análise comparativa. Research, Society and Development, [S. l.], v. 9, n. 3, p. e42932022, 2020. DOI: 10.33448/rsd-v9i3.2022. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2022. Acesso em: 4 jan. 2025.

Edição

Seção

Engenharias