Propriedades difusivas de partículas coloidais carregadas em um confinamento quasi-unidimensional
DOI:
https://doi.org/10.33448/rsd-v10i12.20595Palavras-chave:
Difusão; Colóides; Single-FileResumo
Propriedades difusivas de cristais coloidais em um canal quase unidimensional são estudadas usando simulações numéricas. Para estudar a influência da interação atrativa entre partículas, foi introduzido como um parâmetro adimensional artificial β no termo atrativo do potencial de interação. Alterando o valor de β, podemos ajustar o efeito da atração entre as partículas. Mostramos que partículas carregadas podem mudar sua mobilidade e o expoente de difusão de um sistema semelhante a uma cadeia. A variação na difusão do expoente pode ser induzida pelo ajuste da parte atrativa do potencial de interação, possibilitando a existência de regimes difusivos entre a difusão single-file (SFD) e a difusão normal, sem alterar a força de confinamento. A estequiometria do sistema foi alterada, impondo partículas em diferentes arranjos em pequenos aglomerados, o que varia o comportamento difusivo. Se a estequiometria for diferente de 1:1, é possível ter partículas com cargas iguais, mas com mobilidades diferentes. Outra observação importante é que o desvio quadrático médio (MSD) para cargas diferentes é diferente para valores diferentes.
Referências
Carvalho, J. C. N., Ferreira, W. P., Farias G. A., & Peeters, F. M. (2011). Yukawa particles confined in a channel and subject to a periodic potential: Ground state and normal modes. Phys. Rev. B 83(9), 094109. https://doi.org/10.1103/PhysRevB.83.094109
Carvalho, J. C. N., Nelissen, K., Ferreira, W. P., Farias G. A., & Peeters, F. M. (2012). Diffusion in a quasi-one-dimensional system on a periodic substrate. Phys. Rev. E 85(2), 021136. https://doi.org/10.1103/PhysRevE.85.021136
Coupier, G., Jean, M. S., & Guthmann, C. (2006). Single file diffusion in macroscopic Wigner rings. Phys. Rev. E 73(3), 031112. https://doi.org/10.1103/PhysRevE.73.031112
Delfau, J.-B., Coste, C., & Saint Jean, M. (2011). Single-file diffusion of particles with long-range interactions: Damping and finite-size effects. Phys. Rev. E 84(1), 011101. https://doi.org/10.1103/PhysRevE.84.011101
Doyle, D. A., Cabral, J. M., Pfuetzner, A. K., Gulbis, J. M., Cohen, S. L, Chait, B. T., & MacKinnon, R. (1998). The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science 280(5360), 69-77. https://doi.org/10.1126/science.280.5360.69
Ferreira, W. P., Carvalho, J. C. N., Oliveira, P. W. S., Farias G. A., & Peeters, F. M. (2008). Structural and dynamical properties of a quasi-one-dimensional classical binary system. Phys. Rev. B 77(1), 014112. https://doi.org/10.1103/PhysRevB.77.014112
Frenkel, D., & Smit, B. (2002). Understanding Molecular Simulation: from algorithms to application: Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-267351-1.X5000-7.
Galvan-Moya, J. E., Lucena, D., Ferreira, W. P., & Peeters, F. M. (2014). Magnetic particles confined in a modulated channel: Structural transitions tunable by tilting a magnetic field. Phys. Rev. E 89(3), 032309. https://doi.org/10.1103/PhysRevE.89.032309
Gillespie, D. T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54(2), 2084. https://doi.org/10.1103/PhysRevE.54.2084
Gillespie, D. T. (1996). The mathematics of Brownian motion and Johnson noise. Am. J. Phys. 64(3), 225. https://doi.org/10.1119/1.18210
Harris, E. T. (1965). Diffusion with “collisions” between particles. J. Appl. Probab 2(2), 323-338. https://doi.org/10.2307/3212197
Hernandez, J. A., & Fischbarg, J. (1992). Kinetic analysis of water transport through a single-file pore. J. Gen. Physiol. 99(4), 645-662. https://doi.org/10.1085/jgp.99.4.645
Kollmann, M. (2003). Single-file Diffusion of Atomic and Colloidal Systems: Asymptotic Laws. Phys. Rev. Letters 90(18), 180602. https://doi.org/10.1103/PhysRevLett.90.180602
Konig, H., Hund, R., Zahn, K., & Maret, G. (2005). Experimental realization of a model glass former in 2D. Eur. Phys. J. E 18, 287-293. https://doi.org/10.1140/epje/e2005-00034-9
Leunissen, M. E., Christova, C. G., Hynninen, A. P., Royall, C. P., Campbell, A. I., Imhof, A., Dijkstra, M., van Roji, R., & van Blaaderen, A. (2005). Ionic colloidal crystals of oppositely charged particles. Nature (London) 437, 235-240. https://doi.org/10.1038/nature03946
Lucena, D., Galvan-Moya, J. E., Ferreira, W. P., & Peeters, F. M. (2014). Single-file and normal diffusion of magnetic colloids in modulated channels. Phys. Rev. E 89(3), 032306. https://doi.org/10.1103/PhysRevE.89.032306
Lucena, D., Tkachenko, D. V., Nelissen, K., Misko, V. R., Ferreira, W. P., Farias, G. A., & Peeters, F. M. (2012). Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel. Phys. Rev. E 85(3), 031147. https://doi.org/10.1103/PhysRevE.85.031147
Meier M. W., & Olsen, H. D. (1989). Atlas of Zeolite framework types (second revised edition). Structure Commission of the international Zeolite Association 35(5), 875-875. https://doi.org/10.1002/aic.690350523
Morais-Cabral, J. H., Zhou, Y., & MacKinnon, R. (2001). Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37-42. https://doi.org/10.1038/35102000
Nelissen, K., Misko, V. R., & Peeters, F. M. (2007). Single-file diffusion of interacting particles in a one-dimensional channel. Europhys. Lett. 80(5), 56004. https://doi.org/10.1209/0295-5075/80/56004
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S., & Murray, C. B. (2006). Structural diversity in binary nanoparticle superlattices. Nature (London) 439, 55-59. https://doi.org/10.1038/nature04414
Wei, Q.-H., Bechinger, C., & Leiderer, P. (2000). Single-File Diffusion of Colloids in One-Dimensional Channels. Science 287(5453), 625-627. 10.1126/science.287.5453.625
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Levi Rodrigues Leite; Jorge Luiz Bezerra de Araújo; Leandro Jader Pitombeira Xavier; Vagner Henrique Loiola Bessa; João Cláudio Nunes Carvalho; Diego de Lucena Camarão
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.