Fontes de radiação não ionizante e casos de leucemia infantil: uma revisão integrativa

Autores

DOI:

https://doi.org/10.33448/rsd-v10i13.20745

Palavras-chave:

Campo eletromagnético; Leucemia; Radiação não ionizante.

Resumo

Introdução: A leucemia infantil é considerada o câncer mais comum em crianças de 0 a 14 anos, e está relacionada a fatores genéticos e mais fortemente aos fatores ambientais, dentre os quais a radiação não ionizante de baixa frequência vem sendo estudada como fator de risco. Objetivo: Analisar evidências científicas sobre a associação entre fontes de radiação não ionizante de baixa frequência e a ocorrência de leucemia infantil. Metodologia: Trata-se de uma revisão integrativa onde os descritores utilizados foram Electromagnetic Fields and Leukemia, indexados no Medical Subject Headings, para pesquisa nas bases de dados PubMed, Elsevier's Scopus and Web of Science, e Magnetic Fields and Leukemia, indexados nos descritores em Ciências da Saúde, para pesquisa na Biblioteca Virtual da Saúde. Dois pesquisadores selecionaram artigos completos de estudos de caso-controle publicados de 2010 a 2020. Dois pesquisadores selecionaram artigos completos sobre estudos de caso-controle publicados de 2010 a 2020. O software Rayyan QCRI foi utilizado para análise dos artigos. Resultados: Foram analisados cinco artigos que atenderam ao delineamento metodológico proposto. Os artigos foram publicados em inglês, de 2012 a 2020, e os participantes dos estudos tinham idade inferior a 16 anos. Os desenhos dos métodos para avaliação da exposição foram heterogêneos, assim como o ambiente analisado. As limitações dos estudos foram decorrentes da ausência de avaliação de outras fontes externas potenciais ao desenvolvimento da leucemia infantil. Conclusão: Vale ressaltar que a exposição aos campos eletromagnéticos ocorre por diferentes fontes e os efeitos fisiológicos ainda precisam ser melhor explorados. Estudos robustos são necessários para analisar campos eletromagnéticos de baixa frequência como possível carcinogênico aos seres humanos. Em decorrência da heterogeneidade metodológica e de variáveis de confundimento existentes nos artigos analisados, os autores concluíram que não foi possível evidenciar a relação entre as fontes de radiação não ionizante de baixa frequência e o desenvolvimento da leucemia infantil.

Biografia do Autor

Cyntia Maria Moreira Herkert, Faculdade Estácio Campo Grande

Faculdade Estácio Campo Grande

Andréia Insabralde de Queiroz Cardoso, Universidade Federal de Mato Grosso do Sul

Instituto Integrado de Saúde - Universidade Federal de Mato Grosso do Sul

Alexandra Maria Almeida Carvalho Carvalho, Universidade Federal de Mato Grosso do Sul

Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste - Faculdade de Medicina - Universidade Federal de Mato Grosso do Sul

Referências

Auger, N., Bilodeau-Bertrand, M., Marcoux, S., & Kosatsky, T. (2019). Residential exposure to electromagnetic fields during pregnancy and risk of child cancer: A longitudinal cohort study. Environmental research, 176, 108524. https://doi.org/10.1016/j.envres.2019.108524

Belson, M., Kingsley, B., & Holmes, A. (2007). Risk factors for acute leucemia in children: a review. Environmental Health Perspectives, 115(1), 138-145. https://doi.org/10.1289/ehp.9023

Calvente, I., Fernandez, M. F., Villalba, J., Olea, N., & Nuñez, M. I. (2010). Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review. Science of the Total Environment, 408(16), 3062-3069. https://doi.org/10.1016/j.scitotenv.2010.03.039

Carpenter, D. O. (2019). Extremely low frequency electromagnetic field cancer: How source of funding affects results. Environmental Reserch, 178, 108688. https://doi.org/10.1016/j.envres.2019.108688

Coebergh, J. W. W., Reedij, A. M. J., De Vries, E., Martos, C., Jakab, Z., Steliarova-Foucher, E., & Kamp, W. A. (2006). Leukemia incidence and survival in children and adolescents in Europe during 1978-1997. Report from the automated childhood cancer information system project. European Journal of Cancer, 42, 2019-2036. https://doi.org/10.1016/j.ejca.2006.06.005

Curtin. K., Smith, K. R., Fraser, A., Pimentel, R., Kohlmann, W., & Schiffman, J. D. (2013). Familial risk of childhood cancer and tumors in the Li-Fraumeni spectrum in the Utah Population Database: Implications for genetic evaluation in pediatric practice. The International Journal of Cancer, 133(10): 2444–2453. https://doi.org/10.1002/ijc.28266

Diab, K. A. (2020). The impact of the low frequency of the electromagnetic field on human. Advances in Experimental Medicine and Biology, 1237, 135-149. https://doi.org/10.1007/5584_2019_420

Donato, H., & Donato, M. (2019). Etapas na condução de uma revisão sistemática. Acta Médica Portuguesa, 32(3), 227-235. https://doi.org/10.20344/amp.11923

Greenland, S., Sheppard, A. R., Kaune, W. T., Poole, C., & Kelsh, M. A. (2000). A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology, 11(6), 624-634. https://doi.org/10.197/00001648-200011000-00003

Grellier, J., Ravazzani, P., & Cardis, E. (2014) Potential health impacts of residential exposure to extremely low frequency magnetic fields in Europe. Environment International, 62, 55-63. https://doi.org/10.1016/j.envint.2013.09.017

Instituto Nacional de Câncer José Alencar Gomes da Silva. Tipos de câncer (21019). Rio de Janeiro: INCA. https://www.inca.gov.br/tipos-de-cancer.

International Agency for Research on Cancer (2002). Non-Ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic. IARC Monographs Evalution Carcinogenic Risk to Human, 80.

Jin, M. W., Xu, S. M., An, Q., & Wang, P. (2016). A review of risk factors for childhood leucemia. European Review for Medical and Pharmacological Sciences, 20(18), 3760-3764. https://www.europeanreview.org/article/11444

Jirik, V., Pekarek, L., Janout, V., & Tomaskova, H. (2012). Association between childhood leukaemia and exposure to power-frequency magnetic Fields in Middle Europe. Biomedical and Environmental Sciences, 25(5), 597-601. https://doi: 10.3967/0895-3988.2012.05.015

Karimi, A., Moghaddam, F. G., & Valipour, M. (2020). Insights in the biology of extremely low‑frequency magnetic Fields exposure on human health. Molecular Biology Reports, 47(7), 5621-5633. https://doi.org/10.1007/s11033-020-05563-8

Kaszuba-Zwoinska, J., Gremba, J., Galdzinska-Calik, B., Wójcik-Piotrowicz, K., & Thor, J. P. (2015). Electromagnetic field induced biological effects in humans. Przegl Lek, 72(11), 636–641. https://pubmed.ncbi.nlm.nih.gov/27012122/

Kheifets, L., Crespi, C. M., Hooper, C., Cockburn, M., Amonn, A. T., & Vergara, X. P. (2017). Residential magnetic fields exposure and childhood leukemia: a population-based case–control study in California. Cancer Causes & Control, 28(10), 1117-1123. https://doi.org/10.1007/s10552-017-0951-6

Maia, R. R. P. & Filho, V. W. (2013). Infection and childhood leukemia: review of evidence. Revista de Saúde Pública, 47(6), 1172-1185. https://doi.org/10.1590/S0034-8910.2013047004753

Marcilio, I., Habermann, M., & Gouveia, N. (2009). Campos magnéticos de frequência extremamente baixa e efeitos na saúde: revisão de literatura. Revista Brasileira de Epidemiologia, 12(2), 105-123. https://doi.org/10.1590/s1415-790x2009000200002

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), 1-6. https://doi.org/10.1371/journal.pmed.1000097

Núñez-Enríquez, J. C., Correa-Correa, V., Flores-Lujano, J., Pérez-Saldivar, M. L., Jiménez-Hernández, E., Martín-Trejo, J. A., Espinoza-Hernández, L. E., Medina-Sanson, A., Cárdenas-Cardos, R., Flores-Villegas, L. V., Peñaloza-González. J. G., Torres-Nava, J. R., Espinosa-Elizondo, R. M., Amador-Sánchez, R., Rivera-Luna, R., Dosta-Herrera, J. J., Mondragón-Garcia, J. A., González-Ulibarri, J. E., Martínez-Silva, S. I., Espinoza-Anrubio, G., Duarte-Rodríguez, D. A., García-Cortés, L. R., Gil-Hernández, A. E., & Mejía-Aranguré, J. M. (2020). Extremely low-frequency magnetic fields and the risk of childhood B‐lineage acute lymphoblastic leukemia in a city with high incidence of leukemia and elevated exposure to ELF Magnetic Fields. Bioelectromagnetics, 41(8), 581-597. http://doi.org/10.1002/bem.22295

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4

Pedersen, C., Raaschou-Nielsen, O., Rod, N. H., Frei, P., Poulsen, A. H., Johansen, C., & Schu, J. (2014). Distance from residence to power line and risk of childhood leukemia: a populationbased case-control study in Denmark. Cancer Causes Control, 25(2), 171–177. https://doi.org/10.1007/s10552-013-0319-5

Pedersen, C., Johansen, C., Schuz, J., Olsen, J. H., & Raaschou-Nielsen, O. (2015). Residential exposure to extremely low-frequency magnetic fields and risk of childhood leukaemia, CNS tumour and lymphoma in Denmark. British Journal of Cancer, 13, 1370-1374. http://doi.org/10.1038/bjc.2015.365

Pelissari, D. M., Barbieri, F. E., & Wünsch Filho, V. (2009). Magnetic Fields and acute lymphoblastic leucemia in children: a systematic review of case-control studies. Caderno de Saúde Pública, 25(3), S441-S452. https://doi.org/10.1590/S0102-311X2009001500009

Salvan, A., Ranucci, A., Lagorio, S., Magnani, C., % Em nome do SETIL Research Group. (2015). Childhood leucemia and 50 Hz magnetic Fields: findings from the Italian SETIL case-control study. International Journal of Environmental Research and Public Health, 12(2), 2184-2204. https://doi.org/10.3390/ijerph120202184

Saliev, T., Begimbetova, D., Masoud, A., & Matkarimov, B. (2018). Biological effects of non-ionizing electromagnetic field: Two sides of a coin. Progress in Biophysics and Molecular Biology, 141, 25-36. https://doi.org/10.1016/j.pbiomolbio.2018.07.009

Scarfi, M. R., Mattsson, M., Simkó, M., & Zeni, O. (2019). Special Issue: “Electric, Magnetic, and Electromagnetic Fields in Biology and Medicine: From Mechanisms to Biomedical Applications”. International Journal of Environmental Research and Public Health, 16(22), 4548. https://doi.org/10.3390/ijerph16224548

Scientific Committee on Emerging Newly Identified Health Risks (2015). Opinion on potential Health Effects of Exposureto Electromagnetic Fields. Bioelectromagnetics, 36(6), 480-484. https://doi.org/10.1002/bem.21930

Stillwell, S., Fineoutr-Overholt, E., Melnyk, B., & Wiliiamson, K. (2010). Evidence-based practice, step by step: searching for the evidence. Journal of Advanced Nursing, 110(5), 41-47. https://doi.org/10.1097 / 01.NAJ.0000372071.24134.7e

Wertheimer, N., & Leeper, E. (1979). Electrical wiring configurations and childhood cancer. American Journal of Epidemiology, 109(3), 273-284. https://doi.org/10.1093/oxfordjournals.aje.a112681

Whitehead, P., Metayer, C., Wiemels, J. L., Singer, A, W., & Miller, M. D. (2016). Childhood Leukemia and Primary Prevention. Current Problems Pediatric Adolescent Health Care, 46(10), 317–352. https://doi.org/10.1016/j.cppeds.2016.08.004

Whittemore, R., & Knafl, K. (2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52(5), 546-553. https://doi.org/10.1111/j.1365-2648.2005.03621.x

Downloads

Publicado

03/10/2021

Como Citar

HERKERT, C. M. M.; CARDOSO, A. I. de Q. .; CARVALHO, A. M. A. C. Fontes de radiação não ionizante e casos de leucemia infantil: uma revisão integrativa. Research, Society and Development, [S. l.], v. 10, n. 13, p. e19101320745, 2021. DOI: 10.33448/rsd-v10i13.20745. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20745. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde