Biohidrogenação ruminal e os principais impactos no perfil de ácidos graxos da carne: revisão
DOI:
https://doi.org/10.33448/rsd-v10i13.21039Palavras-chave:
microorganismos; Microorganismos; Dendê; licuri; Licuri; ácido rumênico; dendê; Ácido rumênico.Resumo
Na carne e leite de ruminantes, o perfil dos ácidos graxos (AG) se diferencia pelo maior teor do ácido linoleico conjugado (CLA), molécula com propriedades bioativas. O presente trabalho foi realizado por busca bibliográfica com os objetivos de descrever o processo de BH com suas principias rotas e descrever os principais efeitos da suplementação de lipídios no perfil de AG da carne de ruminantes, ressaltando os potenciais efeitos dos AG de cadeia média (AGCM). O processo de biohidrogenação (BH) ruminal é responsável pela síntese da CLA, e sua manipulação é o foco de muitas pesquisas que tentam aumentar os AG benéficos nos produtos de ruminantes. Com a inibição da BH, aumenta-se o teor de CLA sendo absorvido pelo duodeno. Para tanto, o uso de fontes de AG insaturados e AGCM tem sido estudado. No entanto, existem poucas pesquisas sobre o efeito dos AGCM na BH. Esse AG têm o potencial para aumentar a fluidez das membranas de bactérias gram-positivas, tornando-as ineficientes, diminuindo sua atividade, o que ocasiona uma redução da segunda etapa da BH e, como consequência, um acúmulo do CLA no rúmen. Como fontes principais de AGCM, destacam-se apenas o óleo de coco, dendê e licuri. Mais pesquisas são necessárias para entendermos como elas se comparam a outros métodos de manipulação ruminal e eficiência de melhorar a qualidade dos produtos de ruminantes para o consumo humano, com foco no perfil de AG.
Referências
Abubakr, A., Alimon, A. R., Yaakub, H., Abdullah, N., & Ivan, M. (2014). Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats. PLoS One, 9(4), 1-6.
Allen, M. S. (200). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science, 83(7), 1598-1624.
Bach, A. C., & Babayan, V. K. (1982). Medium-chain triglycerides: an update. The American Journal of Clinical Nutrition, 36(5), 950-62.
Bauman, D. E., Baumgard, L. H., Corl, B. A., & Griinari, J. M. (2001). Conjugated linoleic acid (CLA) and the dairy cow. In: Recent Advances in Animal Nutrition - 2001. P. C. Garnsworthy and J. Wiseman, eds. Nottingham University Press, Nottingham, UK.
Berchielli, T. T., Pires, A. V., & Oliveira, S. G. (2011). Nutrição de Ruminantes. Editora Jaboticabal, Funep.
Bernard, L., Leroux, C., Faulconnier, Y., Durand, D., Shingfield, K. J., & Chilliard, Y. (2009). Effect of sunflower-seed oil or linseed oil on milk fatty acid secretion and lipogenic gene expression in goats fed hay-based diets. The Journal of dairy research, 76(2), 241-148.
Buccioni, A., Decandia, M., Minieri, S., Molle, G., & Cabiddu, A. (2012). Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Animal Feed Science and Technology, 174(1), 1-25.
Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L., & Pariza, M. W. (1992). Dietary sources of conjugated dienoic isomers of linoleic acid. Journal of Food Composition and Analysis, 5(3), 185-197.
Czerkawski, J.W. Microbial fermentation in the rumen. (1984). Proceedings of the Nutrition Society, 43(2), 101-118.
Dehorty, B. A. (2003). Rumen Microbiology. Nottingham: Nottingham University Press.
Devillard, E., McIntosh, F. M., Duncan, S. H., & Wallace, R. J. (2007). Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. Journal of Bacteriology, 189(6), 2566–2570.
Devillard, E., McIntosh, F. M., Newbold, C. J., & Wallace, R. J. (2006). Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. British Journal Nutrition, 96(4), 697–704.
Dhiman, T. R., Nam, S. H., & Ure, A. L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical Reviews in Food Science and Nutrition, 45(6), 463-482.
Doreau, M., & Ferlay, A. (1994). Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology, 45(3), 379-396.
Emmanuel, B. (1974). On the origin of rumen protozoan fatty acids. Biochimica et Biophysica Acta (BBA), 337(3), 404-413.
Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Faciola, A. P., & Broderick, G. A. (2013). Effects of feeding lauric acid on ruminal protozoa numbers, fermentation, digestion, and on milk production in dairy cows. Journal Animal Science, 91(5), 2243–2253.
Givens, D. I., Kliem, K. E., & Gibbs, R. A. (2006). The role of meat as a source of n−3 polyunsaturated fatty acids in the human diet. Meat Science, 74(1), 209-218.
Givens, D. I., & Shingfield, K. J. (2004). Food derived from animals: the impact of animal nutrition on their nutritive value and ability to sustain long-term health. Nutrition Bull, 29, 325–332.
Goel, G., Arvidsson, K., Vlaeminck, B., Bruggeman, G., Deschepper, K., & Fievez, V. (2009). Effects of capric acid on rumen methanogenesis and biohydrogenation of linoleic and α-linolenic acid. Animal, 3(6), 810-816.
Griinari, J. M., & Bauman, D. E. (1999). Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz, M. P.; Mossoba, M. M.; Kramer, J. K. G.; Pariza, M. W.; Nelson, G. J. Nelson (Ed.) Advances in Conjugated Linoleic Acid Research, Vol. 1. AOCS Press, Champaign, IL.
Harfoot, C. G. (1978). Lipid metabolism in the rumen. Progress in lipid research, 17(1), 21-54.
Hespell, R.B., & O’Bryan-Shah, P. J. (1988). Esterase activities in Butyrivibrio fibrisolvens strains. Applied and Environmental Microbiology, 54(8), 1917–1922.
Hollman, M., & Beede, D. K. (2012). Comparison of effects of dietary coconut oil and animal fat blend on lactational performance of Holstein cows fed a high-starch diet. Journal of Dairy Science, 95(3), 1484-1499.
Hristov, A.N., & Jouany, J.P. (2005). Factors affecting the efficiency of nitrogen utilization in the rumen. In: Nitrogen and phosphorus nutrition of cattle and environment. CAB International, Wallingford, UK.
Hristov, A. N., Lee, C., Cassidy, T., Long, M., Heyler, K., Corl, B., & Forster, R. (2011). Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. Journal of Dairy Science, 94(1), 382–395.
Jenkins, T. C., & Bridges, W.C. (2007). Protection of fatty acids against ruminal biohydrogenation in cattle. European Journal of Lipid Science and Technology, 109(8), 778-789.
Jenkins, T.C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397-412.
Kelley, N.S., Hubbard, N.E., & Erickson, K.L. (2007). Conjugated linoleic acid isomers and cancer. The Journal of Nutrition, 137(12), 2599–2607.
Kemp, P., Lander, D. J., & Orpin, C. G. (1984). The lipids of the rumen fungus Piromonas communis. Microbiology, 130(1), 27-37.
Kemp, P., White, R.W., & Lander, D. J. (1975). The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. Microbiology, 90(1), 100-114.
Kepler, C., & Tove, S. (1971). Biohydrogenation of unsaturated fatty acids. The Journal Biological Chemistry, 246(16), 5025-5030.
Kepler, C. R., Hirons, K. P., McNeill, J. J., & Tove, S. B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. The Journal Biological Chemistry, 241, 1350-1354.
Kim, E. J., Sandersson, R., Dhanoa, M. S., & Dewhurst, R. J. (2005). Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation. Journal of Dairy Science, 88(9), 3220–3230.
Kozloski, G. V. Bioquímica dos ruminantes. (2011). UFSM.
Kramer, J. K. Distributions of conjugated linoleic acid (CLA) isomers in tissue lipid classes of pigs fed a commercial CLA mixture determined by gas chromatography and silver ion-high-performance liquid chromatography. (1998). Lipids, 33(6), 549–558.
Lawson, R. E., Moss, A. R., & Givens, D. I. (2001). The role of dairy products in supplying conjugated linoleic acid to man’s diet: a review. Nutrition Research Reviews, 14(1), 153–172.
Lima, F. E. L., Menezes, T. N., Tavares, M. P., Szarfarc, S. C., & Fisberg, R. M. (2000). Ácidos graxos e doenças cardiovasculasculares: uma revisão. Revista de Nutrição, 13(2), 73-80.
Machamuller, A., & Kreuzer, M. (1999). Methane suppresion by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal of Animal Science, 79(1), 65-72.
Machmuller, A. (2006). Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agriculture, Ecosystems and Environment., 112(2), 107–114.
Machmuller, A., Ossowski, D. A., Wanner, M., & Kreuzer, M. (1998). Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (RUSITEC). Animal Feed Science and Technology, 71(1), 117-130.
McGarry, J. D., & Foster, D.W. (1971). The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. The Journal of Biological Chemistry, 246(4), 1149-1159.
McKain, N., Shingfield, K. J., & Wallace, R. J. (2010). Metabolism of conjugated linoleic acids and 18: 1 fatty acids by ruminal bacteria: products and mechanisms. Microbiology, 156(2), 579-588.
McSweeney, C., & Mackie, R. (2012). Micro-organisms and ruminant digestion: State of knowdge, trends and future prospects. Background Study Paper, 61. Commission on Genetic Resources for Food and Agriculture.
Moon, C. D., Pacheco, D. M., Kelly, W. J., Leahy, S. C., Li, D., Kopecny, J., & Attood, G. T. (2008). Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. International Journal Systematic and Evolutionary Microbiology, 58(9), 2041–2045.
Nam, I.S., & Garnsworthy, P. C. (2007). Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. Journal of Applied microbiology, 103(3), 551-556.
Newbold, C.J. (1996). Probiotics for ruminants. Annales de Zootechnie, 45, 329-335.
Noble, R. C., Moore, J. H., & Harfoot, C. G. (1974). Observations on the pattern on biohydrogenation of esterified and unesterified linoleic acid in the rumen. Br. J. Nutr. 31, 99-108.
Parodi, P. W. (1999). Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. Journal of Dairy Science, 82, 6, 1339–1349.
Parodi, P. W. (2003). Conjugated linoleic acid in food. In: Sebedio, J. L.; Christie, W.W.; Adlof, R. (Eds). Advances in Conjugated Linoleic Acid Research, Vol. 2, Champaign, IL: AOCS Press.
Polan, C. E., McNeill, J. J., & Tove, S. B. (1964). Biohydrogenation of unsaturated fatty acids by rumen bacteria. Journal of Bacteriology, 88(4), 1056-1064.
Van Soest, P. J. (1994). Nutritional ecology of the ruminant. Cornell University Press.
Wahle, K. W. J., Heys, S. D., & Rotondo, D. (2004). Conjugated linoleic acids: Are they beneficial or detrimental to health? Progress in Lipid Research, 43(6), 553–587.
Wang, Y.W., & Jones, P. J. (2004). Conjugated linoleic acid and obesity control: efficacy and mechanisms. International Journal of Obesity and Related Metabolic Disorders, 28(8), 941–955.
Ward, A.T., Wittenberg, K. M., & Przybylski, R. (2002). Bovine milk fatty acid profiles produced by feeding diets containing solin, flax and canola. Journal of Dairy Science, 85(5), 1191–1196.
Yavary, A., Hamedi, M., Heshmati, A., & Haghbin, S. (2010). Retraction: Are conjugated linoleic acid (CLA) isomers good or bad trans fats? Lipid Technology, 22(10), 227-229.
Yokoyama, M. T., & Johnson, K. A. (1993). Microbiology of the Rumen and Intestine in the Ruminant Animal: Digestive Physiology and Nutrition. D.C. Church, Edited by Prentice Hall, Englewood Cliffs, N.J.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Jocely Gomes de Souza; Claudio Vaz Di Mambro Ribeiro
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.