Lógica fuzzy aplicada ao pré-tratamento do capim-elefante: uma revisão bibliográfica sistemática
DOI:
https://doi.org/10.33448/rsd-v10i15.23302Palavras-chave:
Sustentabilidade; Pennisetum purpureum; Lógica difusa; NaOH.Resumo
A economia global é diretamente dependente dos combustíveis fósseis, consumindo um total de aproximadamente 70% destas fontes de energia. Contudo, as energias renováveis, principalmente os biocombustíveis produzidos pela biomassa estão ganhando espaço, com destaque para o capim-elefante, que vem se destacando na produção de bioetanol no Brasil. No entanto, antes de ocorrer a fermentação para a produção do bioetanol, a biomassa deverá passar por um processo chamado de pré-tratamento. Por isso, quando se analisa os processos químicos, a otimização nas variáveis para o pré-tratamento é fundamental, assim surge a necessidade de aplicar um sistema de modelagem matemática como a lógica nebulosa ou fuzzy. Diante desse contexto, o objetivo desse artigo é identificar como está configurado o estado do conhecimento sobre a aplicação da lógica fuzzy no pré-tratamento alcalino no capim-elefante. Com a realização da pesquisa utilizando a Revisão Bibliográfica Sistêmica (RBS), foi possível identificar diversas oportunidades da aplicação da lógica fuzzy nos pré-tratamentos alcalinos no capim-elefante. Dos 86 documentos analisados nesta pesquisa, 100% foram de artigos de pesquisa e de revisão bibliográfica, o que demonstra uma relevância na academia ao uso do capim-elefante na produção bioetanol e, da mesma forma, que as pesquisas sobre a aplicação de pré-tratamento nas biomassas vem ganhando importância nos últimos anos, sendo cada vez mais estudada e desenvolvida por pesquisadores da área. Apesar de não apresentar nenhum artigo com referência específica da utilização da lógica fuzzy no pré-tratamento alcalino do capim-elefante, isso abre um grande leque para novas pesquisas utilizando a lógica nebulosa.
Referências
Abbasi, T., & Abbasi, S. A. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews, 14(3), 919–937. https://doi.org/10.1016/j.rser.2009.11.006
Abdelaziz, O. Y., Brink, D. P., Prothmann, J., Ravi, K., Sun, M., García-Hidalgo, J., Sandahl, M., Hulteberg, C. P., Turner, C., Lidén, G., & Gorwa-Grauslund, M. F. (2016). Biological valorization of low molecular weight lignin. Biotechnology Advances, 34(8), 1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001
Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Pandey, A., Park, J. H., & Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology, 301(October 2019), 122725. https://doi.org/10.1016/j.biortech.2019.122725
Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015
Agrawal, R., Satlewal, A., Kapoor, M., Mondal, S., & Basu, B. (2017). Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw. Bioresource Technology, 224, 411–418. https://doi.org/10.1016/j.biortech.2016.11.026
Ahmad, M. S., Mehmood, M. A., Liu, C. G., Tawab, A., Bai, F. W., Sakdaronnarong, C., Xu, J., Rahimuddin, S. A., & Gull, M. (2018). Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresource Technology, 253, 297–303. https://doi.org/10.1016/j.biortech.2018.01.033
Alonso, E. (2018). The role of supercritical fluids in the fractionation pretreatments of a wheat bran-based biorefinery. Journal of Supercritical Fluids, 133(September 2017), 603–614. https://doi.org/10.1016/j.supflu.2017.09.010
Antonopoulou, G., Gavala, H. N., Skiadas, I. V., & Lyberatos, G. (2015). The Effect of Aqueous Ammonia Soaking Pretreatment on Methane Generation Using Different Lignocellulosic Biomasses. Waste and Biomass Valorization, 6(3), 281–291. https://doi.org/10.1007/s12649-015-9352-9
Aquino, E. L. R. de, Neto, M. M., Bernardo, C. H. C., Morais, F. J. de O., & Santos, P. S. B. dos. (2020). Ferramentas de manutenção preditiva de motores diesel: uma revisão bibliográfica sistemática. Research, Society and Development, 9(11), e57691110195. https://doi.org/10.33448/rsd-v9i11.10195
Bensah, Edem C., Kádár, Z., & Mensah, M. Y. (2019). Alkali and glycerol pretreatment of West African biomass for production of sugars and ethanol. Bioresource Technology Reports, 6(February), 123–130. https://doi.org/10.1016/j.biteb.2019.02.013
Bensah, Edem Cudjoe, Kemausuor, F., Miezah, K., Kádár, Z., & Mensah, M. (2015). African perspective on cellulosic ethanol production. Renewable and Sustainable Energy Reviews, 49, 1–11. https://doi.org/10.1016/j.rser.2015.04.059
Blois, H. D., Paris, E., Carvalho, M. P., & Nunes, B. B. (2017). Silvicultura: Cenários Prospectivos para Geração de Energia Elétrica. Revista de Gestão Ambiental e Sustentabilidade, 6(1), 140–159. https://doi.org/10.5585/geas.v6i1.488
Bonfiglio, F., Cagno, M., Rey, F., Torres, M., Böthig, S., Menéndez, P., & Mussatto, S. I. (2019). Pretreatment of switchgrass by steam explosion in a semi-continuous pre-pilot reactor. Biomass and Bioenergy, 121(November 2018), 41–47. https://doi.org/10.1016/j.biombioe.2018.12.013
Bracarense, J. C., Dos Santos, C. V., & Mayerle, S. F. (2013). Tomada de decisão sob condições de risco e incerteza: uma aplicação da lógica fuzzy à bovinocultura de corte da região Serrana de Santa Catarina. Revista Teoria e Evidência Econômica, 19(41), 73–101. https://doi.org/10.5335/rtee.v0i41.3734
Brito da Silva, V., Daher, R. F., de Souza, Y. P., da Silva Menezes, B. R., Azevedo Santos, E., Souza Freitas, R., da Silva Oliveira, E., Francesconi Stida, W., & Cassaro, S. (2020). Assessment of energy production in full-sibling families of elephant grass by mixed models. Renewable Energy, 146, 744–749. https://doi.org/10.1016/j.renene.2019.06.152
Burman, N. W., Sheridan, C. M., & Harding, K. G. (2019). Lignocellulosic bioethanol production from grasses pre-treated with acid mine drainage: Modeling and comparison of SHF and SSF. Bioresource Technology Reports, 7(July), 100299. https://doi.org/10.1016/j.biteb.2019.100299
Cai, C., Wang, L., Wang, G., Hao, J., Bai, X., Wang, Z., & Wang, D. (2020). Effects of dry explosion pretreatment on physicochemical and fuel properties of hybrid pennisetum (Pennisetum americanum × P. purpureum). Bioresource Technology, 297(November 2019), 122508. https://doi.org/10.1016/j.biortech.2019.122508
Camargos, C. H. M., Silva, R. A. P., Csordas, Y., Silva, L. L., & Rezende, C. A. (2019). Experimentally designed corn biomass fractionation to obtain lignin nanoparticles and fermentable sugars. Industrial Crops and Products, 140(April), 111649. https://doi.org/10.1016/j.indcrop.2019.111649
Cardona, E., Rios, J., Peña, J., & Rios, L. (2014). Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel, 118, 41–47. https://doi.org/10.1016/j.fuel.2013.10.055
Carvalho-Netto, O. V., Bressiani, J. A., Soriano, H. L., Fiori, C. S., Santos, J. M., Barbosa, G. V., Xavier, M. A., Landell, M. G., & Pereira, G. A. (2014). The potential of the energy cane as the main biomass crop for the cellulosic industry. Chemical and Biological Technologies in Agriculture, 1–20. https://doi.org/10.1186/s40538-014-0020-2
Chandel, A. K., Singh, O. V., Chandrasekhar, G., Rao, L. V., & Narasu, M. L. (2010). Key drivers influencing the commercialization of ethanol-based biorefineries. Journal of Commercial Biotechnology, 16(3), 239–257. https://doi.org/10.1057/jcb.2010.5
Charlton, A., Elias, R., Fish, S., Fowler, P., & Gallagher, J. (2009). The biorefining opportunities in Wales: Understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chemical Engineering Research and Design, 87(9), 1147–1161. https://doi.org/10.1016/j.cherd.2009.06.013
Coelho, Y. C. de M., Oliveira, E. M. de, & Almeida, A. C. P. C. de. (2021). Discussões e tendências das teses e dissertações sobre formação de professores de ciências em espaços não formais: uma Revisão Bibliográfica Sistemática. Ensaio Pesquisa Em Educação Em Ciências (Belo Horizonte), 23, 1–18. https://doi.org/10.1590/1983-21172021230103
Coffin, A. W., Strickland, T. C., Anderson, W. F., Lamb, M. C., Lowrance, R. R., & Smith, C. M. (2016). Potential for Production of Perennial Biofuel Feedstocks in Conservation Buffers on the Coastal Plain of Georgia, USA. Bioenergy Research, 9(2), 587–600. https://doi.org/10.1007/s12155-015-9700-4
Conforto, E. C., Amaral, D. C., & Silva, S. L. Da. (2011). Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP 2011, 1–12. http://www.ufrgs.br/cbgdp2011/downloads/9149.pdf
Daher, R. F., Souza, L. B., Gravina, G. A., Machado, J. C., Ramos, H. C. C., Silva, V. Q. R., Menezes, B. R. S., Schneider, L. S. A., Oliveira, M. L. F., & Gottardo, R. D. (2014). Use of elephant grass for energy production in Campos dos Goytacazes-RJ, Brazil. Genetics and Molecular Research, 13(4), 10898–10908. https://doi.org/10.4238/2014.December.19.11
Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., Jiang, L., Zeng, Z., & Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107(February), 20–36. https://doi.org/10.1016/j.rser.2019.02.015
Del Río, J. C., Lino, A. G., Colodette, J. L., Lima, C. F., Gutiérrez, A., Martínez, Á. T., Lu, F., Ralph, J., & Rencoret, J. (2015). Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass and Bioenergy, 81, 322–338. https://doi.org/10.1016/j.biombioe.2015.07.006
Demain, A. L. (2009). Biosolutions to the energy problem. Journal of Industrial Microbiology and Biotechnology, 36(3), 319–332. https://doi.org/10.1007/s10295-008-0521-8
Dhabhai, R., Niu, C. H., & Dalai, A. K. (2018). Agricultural byproducts-based biosorbents for purification of bioalcohols: A review. Bioresources and Bioprocessing, 5(1). https://doi.org/10.1186/s40643-018-0223-7
Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. https://doi.org/10.1016/j.renene.2017.04.035
Duarah, P., Haldar, D., & Purkait, M. K. (2020). Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review. International Journal of Biological Macromolecules, 163, 1828–1843. https://doi.org/10.1016/j.ijbiomac.2020.09.076
Duku, M. H., Gu, S., & Hagan, E. Ben. (2011). A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable and Sustainable Energy Reviews, 15(1), 404–415. https://doi.org/10.1016/j.rser.2010.09.033
Dutra, E. D., Santos, F. A., Alencar, B. R. A., Reis, A. L. S., de Souza, R. de F. R., Aquino, K. A. da S., Morais, M. A., & Menezes, R. S. C. (2018). Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conversion and Biorefinery, 8(1), 225–234. https://doi.org/10.1007/s13399-017-0277-3
Eusébio, C., & João, M. (2020). Attitudes towards people with disabilities: A systematic literature review | Atitudes em relação às pessoas com deficiência: Uma revisão sistemática da literatura. Revista Brasileira de Educacao Especial, 26(4), 689–710.
Farrokh, N. T., Suopajärvi, H., Sulasalmi, P., & Fabritius, T. (2019). A thermogravimetric analysis of lignin char combustion. Energy Procedia, 158, 1241–1248. https://doi.org/10.1016/j.egypro.2019.01.413
Fontoura, C. F., Brandão, L. E., & Gomes, L. L. (2015). Elephant grass biorefineries: Towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, 96, 85–93. https://doi.org/10.1016/j.jclepro.2014.02.062
Furlong, V. B., Corrêa, L. J., Giordano, R. C., & Ribeiro, M. P. A. (2019). Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, 12(11). https://doi.org/10.3390/en12112110
Galvão, C. M., Sawada, N. O., & Trevizan, M. A. (2004). Revisão sistemática: recurso que proporciona a incorporação das evidências na prática da enfermagem. Revista Latino-Americana de Enfermagem, 12(3), 549–556. https://doi.org/10.1590/s0104-11692004000300014
Gholizadeh, M., Hu, X., & Liu, Q. (2019). A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. Renewable and Sustainable Energy Reviews, 114(August), 109313. https://doi.org/10.1016/j.rser.2019.109313
Godinho, E. Z., Perin, A. A., Baumgartner, T. R. da S., & Hasan, S. D. M. (2019). Pré-tratamento hidrotérmico alcalino e alcalino-oxidativo sobre os teores de celulose e lignina em biomassa de capim elefante BRS Capiaçu. Journal of Bioenergy and Food Science, 6(3), 51–65. https://doi.org/10.18067/jbfs.v6i3.263
Gomes, B. L., Martelli, F. H., & Silva, W. T. L. da. (2013). Caracterização físico-química e morfológica de biomassa de capim- elefante,capim-mombaça.brachiaria, sorgo-embrapa e bagaço de cana-de-açucar. III Symposium on Agricultural and Agroindustrial Waste Management, 4.
Gunaseelan, V. N. (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 13(1–2), 83–114. https://doi.org/10.1016/S0961-9534(97)00020-2
Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550–567. https://doi.org/10.1016/j.rser.2014.08.032
Gutierrez, E. C., Xia, A., & Murphy, J. D. (2016). Can slurry biogas systems be cost effective without subsidy in Mexico? Renewable Energy, 95, 22–30. https://doi.org/10.1016/j.renene.2016.03.096
Haldar, D., & Purkait, M. K. (2020). Lignocellulosic conversion into value-added products: A review. Process Biochemistry, 89(October 2019), 110–133. https://doi.org/10.1016/j.procbio.2019.10.001
He, C. R., Kuo, Y. Y., & Li, S. Y. (2017). Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation. Bioresource Technology, 231, 101–108. https://doi.org/10.1016/j.biortech.2017.01.039
Ho, C. Y., Chang, J. J., Lee, S. C., Chin, T. Y., Shih, M. C., Li, W. H., & Huang, C. C. (2012). Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Applied Energy, 100, 27–32. https://doi.org/10.1016/j.apenergy.2012.03.016
Ji, X., & Long, X. (2016). A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations. Renewable and Sustainable Energy Reviews, 61, 41–52. https://doi.org/10.1016/j.rser.2016.03.026
Jin, S., Zhang, G., Zhang, P., Fan, S., & Li, F. (2015). High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. Bioresource Technology, 181, 270–274. https://doi.org/10.1016/j.biortech.2015.01.069
Johansson, S., & Rydberg, T. (2017). Is an increased use of biofuels the road to sustainability?: Consequences of the methodological approach. European Physical Journal Plus, 132(2), 1–14. https://doi.org/10.1140/epjp/i2017-11333-0
Kajina, W., Rousset, P., Chen, W. H., Sornpitak, T., & Commandré, J. M. (2018). Coupled effect of torrefaction and blending on chemical and energy properties for combustion of major open burned agriculture residues in Thailand. Renewable Energy, 118, 113–121. https://doi.org/10.1016/j.renene.2017.11.006
Kang, X., Zhang, Y., Song, B., Sun, Y., Li, L., He, Y., Kong, X., Luo, X., & Yuan, Z. (2019). The effect of mechanical pretreatment on the anaerobic digestion of Hybrid Pennisetum. Fuel, 252(April), 469–474. https://doi.org/10.1016/j.fuel.2019.04.134
Karagöz, P., Rocha, I. V., Özkan, M., & Angelidaki, I. (2012). Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation. Bioresource Technology, 104, 349–357. https://doi.org/10.1016/j.biortech.2011.10.075
Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016a). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48. https://doi.org/10.1016/j.biortech.2015.08.085
Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016b). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48. https://doi.org/10.1016/j.biortech.2015.08.085
Knoll, J. E., Johnson, J. M., Lee, R. D., & Anderson, W. F. (2014). Harvest Management of ‘Tifton 85’ Bermudagrass for Cellulosic Ethanol Production. Bioenergy Research, 7(4), 1112–1119. https://doi.org/10.1007/s12155-014-9449-1
Ko, C. H., Yu, F. C., Chang, F. C., Yang, B. Y., Chen, W. H., Hwang, W. S., & Tu, T. C. (2017). Bioethanol production from recovered napier grass with heavy metals. Journal of Environmental Management, 203, 1005–1010. https://doi.org/10.1016/j.jenvman.2017.04.049
Kuancha, C., Sukklang, S., Detvisitsakun, C., Chanton, S., & Apiraksakorn, J. (2017). Fermentable sugars production from lignocellulosic materials hydrolysis by thermophilic enzymes from Bacillus subtilis J12. Energy Procedia, 138, 151–156. https://doi.org/10.1016/j.egypro.2017.10.084
Kumar, S., & Ghosh, P. (2018). Sustainable bio-energy potential of perennial energy grass from reclaimed coalmine spoil (marginal sites) of India. Renewable Energy, 123, 475–485. https://doi.org/10.1016/j.renene.2018.02.054
Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(May 2017), 877–891. https://doi.org/10.1016/j.rser.2018.03.111
Lima, M. A., Gomez, L. D., Steele-King, C. G., Simister, R., Bernardinelli, O. D., Carvalho, M. A., Rezende, C. A., Labate, C. A., Deazevedo, E. R., McQueen-Mason, S. J., & Polikarpov, I. (2014). Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnology for Biofuels, 7(1), 1–19. https://doi.org/10.1186/1754-6834-7-10
López-Bellido, L., Wery, J., & López-Bellido, R. J. (2014). Energy crops: Prospects in the context of sustainable agriculture. European Journal of Agronomy, 60, 1–12. https://doi.org/10.1016/j.eja.2014.07.001
Lucas, C. A. (2011). Uma Introdução á Lógica Fuzzy. Revista Eletrônica de Sistemas de Informação e de Gestão Tecnológica, 1(1), 17–28.
Manisha, & Yadav, S. K. (2017). Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresource Technology, 245, 1727–1739. https://doi.org/10.1016/j.biortech.2017.05.066
Maranzato, F. P., & Salerno, M. S. (2018). Integration between research and development: A dynamic capabilities perspective. RAE - Revista de Administracao de Empresas, 58(5), 460–474. https://doi.org/10.1590/S0034-759020180503
Massi, L., De Souza, B. N., Sgarbosa, E. C., & Colturato, A. R. (2019). Historical-critical pedagogy incorporation in science education: A dialectic critical analysis of a systematic bibliographic review. Investigacoes Em Ensino de Ciencias, 24(2), 212–255. https://doi.org/10.22600/1518-8795.ienci2019v24n2p212
Menegol, D., Scholl, A. L., Fontana, R. C., Dillon, A. J. P., & Camassola, M. (2014). Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Conversion and Management, 88, 1252–1256. https://doi.org/10.1016/j.enconman.2014.02.071
Merino, O., Almazán, V., Martínez-Palou, R., & Aburto, J. (2017). Screening of Ionic Liquids for Pretreatment of Taiwan Grass in Q-Tube Minireactors for Improving Bioethanol Production. Waste and Biomass Valorization, 8(3), 733–742. https://doi.org/10.1007/s12649-016-9612-3
Minmunin, J., Limpitipanich, P., & Promwungkwa, A. (2015). Delignification of Elephant Grass for Production of Cellulosic Intermediate. Energy Procedia, 79, 220–225. https://doi.org/10.1016/j.egypro.2015.11.468
Mithra, M. G., Jeeva, M. L., Sajeev, M. S., & Padmaja, G. (2018). Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon, 4(10), e00885. https://doi.org/10.1016/j.heliyon.2018.e00885
MME, M. de M. e E. (2020). BALANÇO ENERGÉTICO NACIONAL. In Empresa de Pesquisa Energética- EPE (p. 264).
Mohapatra, S., Mishra, C., Behera, S. S., & Thatoi, H. (2017). Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews, 78(November 2016), 1007–1032. https://doi.org/10.1016/j.rser.2017.05.026
Mohapatra, S., Mishra, S. S., Bhalla, P., & Thatoi, H. (2019). Engineering grass biomass for sustainable and enhanced bioethanol production. Planta, 250(2), 395–412. https://doi.org/10.1007/s00425-019-03218-y
Narinthorn, R., Choorit, W., & Chisti, Y. (2019). Alkaline and fungal pretreatments for improving methane potential of Napier grass. Biomass and Bioenergy, 127(April), 105262. https://doi.org/10.1016/j.biombioe.2019.105262
Nassef, A. M., Rezk, H., Abdelkareem, M. A., Alaswad, A., & Olabi, A. (2019). Application of fuzzy modelling and Particle Swarm Optimization to enhance lipid extraction from microalgae. Sustainable Energy Technologies and Assessments, 35(January), 73–79. https://doi.org/10.1016/j.seta.2019.06.003
Niemi, P., Pihlajaniemi, V., Rinne, M., & Siika-aho, M. (2017). Production of sugars from grass silage after steam explosion or soaking in aqueous ammonia. Industrial Crops and Products, 98, 93–99. https://doi.org/10.1016/j.indcrop.2017.01.022
Ohimain, E. I. (2013). A review of the Nigerian biofuel policy and incentives (2007). Renewable and Sustainable Energy Reviews, 22, 246–256. https://doi.org/10.1016/j.rser.2013.01.037
Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2020). Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12, 2145–2169. https://doi.org/10.1007/s12649-020-01123-0
Paula, P. R. P., Júnior, A. P. N., de Souza, W. L., de Abreu, M. J. I., Teixeira, R. M. A., Cappelle, E. R., & Tavares, V. B. (2020). Composição bromatológica da silagem de capim- elefante BRS Capiaçu com inclusão fubá de milho Chemical composition of BRS Capiaçu elephant grass silage with cornmeal inclusion. Composición química del ensilaje de pasto elefante BRS Capiaçu con inclusión. Pubvet, 14, 148. https://doi.org/10.31533/pubvet.v14n10a680.1-11
Perlatti, B., Forim, M. R., & Zuin, V. G. (2014). Green chemistry, sustainable agriculture and processing systems: a Brazilian overview. Chemical and Biological Technologies in Agriculture, 1(5), 1–9. https://doi.org/10.1186/s40538-014-0005-1
Phitsuwan, P., Charupongrat, S., Klednark, R., & Ratanakhanokchai, K. (2015). Structural features and enzymatic digestibility of Napier grass fibre treated with aqueous ammonia. Journal of Industrial and Engineering Chemistry, 32, 360–364. https://doi.org/10.1016/j.jiec.2015.09.006
Plácido, J., Imam, T., & Capareda, S. (2013). Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresource Technology, 139, 203–208. https://doi.org/10.1016/j.biortech.2013.04.012
Puri, M., Abraham, R. E., & Barrow, C. J. (2012). Biofuel production: Prospects, challenges and feedstock in Australia. Renewable and Sustainable Energy Reviews, 16(8), 6022–6031. https://doi.org/10.1016/j.rser.2012.06.025
Puspawati, S., Wagiman, Ainuri, M., Nugraha, D. A., & Haslianti. (2015). The Production of Bioethanol Fermentation Substrate from Eucheuma cottonii Seaweed through Hydrolysis by Cellulose Enzyme. Agriculture and Agricultural Science Procedia, 3, 200–205. https://doi.org/10.1016/j.aaspro.2015.01.039
Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91. https://doi.org/10.1016/j.biortech.2015.08.029
Rambo, M. K. D., Schmidt, F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696–703. https://doi.org/10.1016/j.talanta.2015.06.045
Ren, N. Q., Zhao, L., Chen, C., Guo, W. Q., & Cao, G. L. (2016). A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresource Technology, 215, 92–99. https://doi.org/10.1016/j.biortech.2016.03.124
Renzaho, A. M. N., Kamara, J. K., & Toole, M. (2017). Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals. Renewable and Sustainable Energy Reviews, 78(January), 503–516. https://doi.org/10.1016/j.rser.2017.04.072
Rocha, A. M. H., Silva, M. S., Fernandes, F. M., Paulillo, L. C. M. S., & Torres, E. A. (2017). Prospecção tecnológica do capim elefante e sua relevância como matéria-prima para a produção energética. Revista Em Agronegocio e Meio Ambiente, 10(2), 475–499. https://doi.org/10.17765/2176-9168.2017v10n2p475-499
Rocha, J. R. do A. S. de C., Machado, J. C., Carneiro, P. C. S., Carneiro, J. da C., Resende, M. D. V., Lédo, F. J. da S., & Carneiro, J. E. de S. (2017). Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops and Products, 95, 485–492. https://doi.org/10.1016/j.indcrop.2016.10.060
Roy, R., Rahman, M. S., & Raynie, D. E. (2020). Recent advances of greener pretreatment technologies of lignocellulose. Current Research in Green and Sustainable Chemistry, 3(August), 100035. https://doi.org/10.1016/j.crgsc.2020.100035
Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
Sawatdeenarunat, C., Nam, H., Adhikari, S., Sung, S., & Khanal, S. K. (2018). Decentralized biorefinery for lignocellulosic biomass: Integrating anaerobic digestion with thermochemical conversion. Bioresource Technology, 250(November 2017), 140–147. https://doi.org/10.1016/j.biortech.2017.11.020
Scholl, A. L., Menegol, D., Pitarelo, A. P., Fontana, R. C., Filho, A. Z., Ramos, L. P., Dillon, A. J. P., & Camassola, M. (2015a). Elephant grass pretreated by steam explosion for inducing secretion of cellulases and xylanases by Penicillium echinulatum S1M29 solid-state cultivation. Industrial Crops and Products, 77, 97–107. https://doi.org/10.1016/j.indcrop.2015.08.051
Scholl, A. L., Menegol, D., Pitarelo, A. P., Fontana, R. C., Filho, A. Z., Ramos, L. P., Dillon, A. J. P., & Camassola, M. (2015b). Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Bioresource Technology, 192, 228–237. https://doi.org/10.1016/j.biortech.2015.05.065
Shilpi, S., Lamb, D., Bolan, N., Seshadri, B., Choppala, G., & Naidu, R. (2019). Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. Journal of Environmental Management, 239(August 2018), 73–83. https://doi.org/10.1016/j.jenvman.2019.02.122
Singh, S. K., & Dhepe, P. L. (2016). Isolation of lignin by organosolv process from different varieties of rice husk: Understanding their physical and chemical properties. Bioresource Technology, 221, 310–317. https://doi.org/10.1016/j.biortech.2016.09.042
Skiba, E. A., Budaeva, V. V., Ovchinnikova, E. V., Gladysheva, E. K., Kashcheyeva, E. I., Pavlov, I. N., & Sakovich, G. V. (2020). A technology for pilot production of bacterial cellulose from oat hulls. Chemical Engineering Journal, 383(September 2019), 123128. https://doi.org/10.1016/j.cej.2019.123128
Smith, A. L., Klenk, N., Wood, S., Hewitt, N., Henriques, I., Yan, N., & Bazely, D. R. (2013). Second generation biofuels and bioinvasions: An evaluation of invasive risks and policy responses in the United States and Canada. Renewable and Sustainable Energy Reviews, 27, 30–42. https://doi.org/10.1016/j.rser.2013.06.013
Surendra, K. C., & Khanal, S. K. (2015). Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop. Bioresource Technology, 178, 187–193. https://doi.org/10.1016/j.biortech.2014.09.055
Takara, D., & Khanal, S. K. (2011). Green processing of tropical banagrass into biofuel and biobased products: An innovative biorefinery approach. Bioresource Technology, 102(2), 1587–1592. https://doi.org/10.1016/j.biortech.2010.08.106
Takara, D., & Khanal, S. K. (2015). Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresource Technology, 188, 103–108. https://doi.org/10.1016/j.biortech.2015.01.114
Timilsena, Y. P., Abeywickrama, C. J., Rakshit, S. K., & Brosse, N. (2013). Effect of different pretreatments on delignification pattern and enzymatic hydrolysability of miscanthus, oil palm biomass and typha grass. Bioresource Technology, 135, 82–88. https://doi.org/10.1016/j.biortech.2012.09.010
Ullah, K., Kumar Sharma, V., Dhingra, S., Braccio, G., Ahmad, M., & Sofia, S. (2015). Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renewable and Sustainable Energy Reviews, 51, 682–698. https://doi.org/10.1016/j.rser.2015.06.044
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Emmanuel Zullo Godinho; Fernando de Lima Caneppele
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.