Influência da composição de ácidos graxos em diferentes tecidos de camundongos alimentados com óleos de peixe
DOI:
https://doi.org/10.33448/rsd-v10i16.23706Palavras-chave:
Ômega-3; EPA; DHA; Ester etílico; TAG.Resumo
Os ácidos graxos poliinsaturados de cadeia longa ômega-3 (n-3 AGPI-CL), como o ácido eicosapentaenóico (EPA) e o ácido docosahexaenóico (DHA), desempenham um papel importante na saúde humana. Os óleos de peixe enriquecidos com EPA e DHA foram comercializados nas formas de triacilglicerol (TAG) e éster etílico (EE). Neste estudo, comparamos o impacto de dietas contendo óleo de peixe em formas de éster etílico e triacilglicerol como fonte lipídica em cinco tecidos diferentes como fígado, músculo esquelético, cérebro e tecido adiposo branco (TAB) epididimal. Os níveis de DHA foram maiores nos grupos TAB e músculo esquelético dos grupos TAG e EE em comparação com o grupo SB. O peso corporal e os pesos do cérebro, fígado, TAB epididimal e músculos gastrocnêmios e glicose sérica, TG, colesterol não foram diferentes entre os grupos. Assim, concluímos que EPA e DHA na forma de EE ou TAG influenciam a composição de ácidos graxos de diferentes tecidos.
Referências
Antunes, M. M., Godoy, G., de Almeida-Souza, C. B., da Rocha, B. A., da Silva-Santi, L. G., Masi, L. N., ... & Bazotte, R. B. (2020). A high-carbohydrate diet induces greater inflammation than a high-fat diet in mouse skeletal muscle. Brazilian Journal of Medical and Biological Research, 53(3).
Arterburn, L. M., Hall, E. B., & Oken, H. (2006). Distribution, interconversion, and dose response of n− 3 fatty acids in humans. The American journal of clinical nutrition, 83(6), 1467S-1476S.
Bargut, T. C. L., Santos, L. P., Machado, D. G. L., Aguila, M. B., & Mandarim-de-Lacerda, C. A. (2017). Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet. Prostaglandins, Leukotrienes and Essential Fatty Acids, 123, 14-24.
Bezard, J., Blond, J. P., Bernard, A., & Clouet, P. (1994). The metabolism and availability of essential fatty acids in animal and human tissues. Reproduction Nutrition Development, 34(6), 539-568.
Bowman, L., Mafham, M., Wallendszus, K., Stevens, W., Buck, G., Barton, J., … Armitage, J. (2018). Effects of n-3 fatty acid supplements in diabetes mellitus. New England Journal of Medicine, 379(16), 1540–1550.
Brown, K. M., Sharma, S., Baker, E., Hawkins, W., van der Merwe, M., & Puppa, M. J. (2019). Delta-6-desaturase (FADS2) inhibition and omega-3 fatty acids in skeletal muscle protein turnover. Biochemistry and biophysics reports, 18, 100622.
Calder, P. C. (2015). Functional roles of fatty acids and their effects on human health. Journal of parenteral and enteral nutrition, 39, 18S-32S.
Castaño-Moreno, E., Castillo, V., Peñailillo, R., Llanos, M. N., Valenzuela, R., & Ronco, A. M. (2020). Fatty acid and lipid metabolism in liver of pregnant mice and their offspring is influenced by unbalanced folates/vitamin B12 diets. Prostaglandins, Leukotrienes and Essential Fatty Acids, 154, 102057.
Dave, D., & Routray, W. (2018). Current scenario of Canadian fishery and corresponding underutilized species and fishery byproducts: A potential source of omega-3 fatty acids. Journal of Cleaner Production, 180, 617-641.
Di Minno, M. N. D., Russolillo, A., Lupoli, R., Ambrosino, P., Di Minno, A., & Tarantino, G. (2012). Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease. World journal of gastroenterology: WJG, 18(41), 5839.
Figueiredo, I. L., Claus, T., Júnior, O. O. S., Almeida, V. C., Magon, T., & Visentainer, J. V. (2016). Fast derivatization of fatty acids in different meat samples for gas chromatography analysis. Journal of Chromatography A, 1456, 235-241.
Gregory, M. K., Gibson, R. A., Cook-Johnson, R. J., Cleland, L. G., & James, M. J. (2011). Elongase reactions as control points in long-chain polyunsaturated fatty acid synthesis. PloS one, 6(12), e29662.
Ichi, I., Kono, N., Arita, Y., Haga, S., Arisawa, K., Yamano, M., ... & Arai, H. (2014). Identification of genes and pathways involved in the synthesis of Mead acid (20: 3n− 9), an indicator of essential fatty acid deficiency. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841(1), 204-213.
Jana, A., & Pahan, K. (2010). Sphingolipids in multiple sclerosis. Neuromolecular medicine, 12(4), 351-361.
Jeromson, S., Gallagher, I. J., Galloway, S. D., & Hamilton, D. L. (2015). Omega-3 fatty acids and skeletal muscle health. Marine drugs, 13(11), 6977-7004.
Jung, J. M., Lee, J., Kim, K. H., Jang, I. G., Song, J. G., Kang, K., ... & Kim, H. W. (2017). The effect of lead exposure on fatty acid composition in mouse brain analyzed using pseudo-catalytic derivatization. Environmental Pollution, 222, 182-190.
Kihara, A. (2012). Very long-chain fatty acids: elongation, physiology and related disorders. The journal of biochemistry, 152(5), 387-395.
Lamping, K. G., Nuno, D. W., Coppey, L. J., Holmes, A. J., Hu, S., Oltman, C. L., ... & Yorek, M. A. (2013). Modification of high saturated fat diet with n‐3 polyunsaturated fat improves glucose intolerance and vascular dysfunction. Diabetes, Obesity and Metabolism, 15(2), 144-152.
Levant, B., Ozias, M. K., & Carlson, S. E. (2006). Diet (n-3) polyunsaturated fatty acid content and parity interact to alter maternal rat brain phospholipid fatty acid composition. The Journal of nutrition, 136(8), 2236-2242.
Lindblom, A., Ericsson, C., Hagstedt, T., Kjellstedt, A., Oscarsson, J., & Oakes, N. D. (2018). Uptake and tissue accretion of orally administered free carboxylic acid as compared to ethyl ester form of docosahexaenoic acid (DHA) in the rat. Plos one, 13(8), e0201367.
Liu, R., Chen, L., Wang, Y., Zhang, G., Cheng, Y., Feng, Z., ... & Liu, J. (2020). High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. The Journal of nutritional biochemistry, 79, 108330.
Luchtman, D. W., Meng, Q., & Song, C. (2012). Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson's disease. Behavioural brain research, 226(2), 386-396.
MacKay, D. (2007). A Comparison of Synthetic Ethyl Ester Form Fish Oil vs. Natural Triglyceride Form. http://www.promedics.ca/site/downloads/Triglycerides%20vs%20Ethyl%20Esters.pdf
Masi, L. N., Martins, A. R., Crisma, A. R., do Amaral, C. L., Davanso, M. R., Serdan, T. D. A., ... & Curi, R. (2017). Combination of a high-fat diet with sweetened condensed milk exacerbates inflammation and insulin resistance induced by each separately in mice. Scientific reports, 7(1), 1-10.
Meng, Q., Luchtman, D. W., El Bahh, B., Zidichouski, J. A., Yang, J., & Song, C. (2010). Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices. European journal of pharmacology, 649(1-3), 127-134.
Nakamura, M. T., Yudell, B. E., & Loor, J. J. (2014). Regulation of energy metabolism by long-chain fatty acids. Progress in lipid research, 53, 124-144.
R Development Core Team 3.0.1. (2013). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2, https://www.R-project.org.
Reeves, P. G., Nielsen, F. H., & Fahey Jr, G. C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet.
Rocha-Rodrigues, S., Rodríguez, A., Gonçalves, I. O., Moreira, A., Maciel, E., Santos, S., ... & Magalhães, J. (2017). Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. The international journal of biochemistry & cell biology, 87, 114-124.
Rui, L. (2014). Energy metabolism in the liver. Comprehensive physiology, 4(1), 177.
Ryan, A. M., Reynolds, J. V., Healy, L., Byrne, M., Moore, J., Brannelly, N., ... & Flood, P. (2009). Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Annals of surgery, 249(3), 355-363.
Sarojnalini, C., & Hei, A. (2019). Fish as an important functional food for quality life. U: Functional foods,(Lagouri, V., ured.), IntechOpen, London, 77-97.
Schönfeld, P., & Reiser, G. (2016). Brain lipotoxicity of phytanic acid and very long-chain fatty acids. Harmful cellular/mitochondrial activities in Refsum disease and X-linked adrenoleukodystrophy. Aging and disease, 7(2), 136.
Silva-Santi, D., Gimenez, L., Antunes, M. M., Caparroz-Assef, S. M., Carbonera, F., Masi, L. N., ... & Bazotte, R. B. (2016). Liver fatty acid composition and inflammation in mice fed with high-carbohydrate diet or high-fat diet. Nutrients, 8(11), 682.
Silva-Santi, L. G., Masetto Antunes, M., Mori, M. A., Biesdorf de Almeida-Souza, C., Vergílio Visentainer, J., Carbonera, F., ... & Barbosa Bazotte, R. (2018). Brain fatty acid composition and inflammation in mice fed with high-carbohydrate diet or high-fat diet. Nutrients, 10(9), 1277.
Simopoulos, A. P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3), 128.
Viswanathan, S., Verma, P. R. P., Ganesan, M., & Manivannan, J. (2017). A novel liquid chromatography/tandem mass spectrometry (LC–MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study. Journal of pharmaceutical and biomedical analysis, 141, 250-261.
Wang, L., Fan, H., He, J., Wang, L., Tian, Z., & Wang, C. (2018). Protective effects of omega‐3 fatty acids against Alzheimer's disease in rat brain endothelial cells. Brain and behavior, 8(11), e01037.
Wanten, G. J., & Calder, P. C. (2007). Immune modulation by parenteral lipid emulsions. The American journal of clinical nutrition, 85(5), 1171-1184.
Yang, Z. H., Emma-Okon, B., & Remaley, A. T. (2016). Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: a mini review. Lipids in health and disease, 15(1), 1-9.
Zhang, T. T., Xu, J., Wang, Y. M., & Xue, C. H. (2019). Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Progress in lipid research, 75, 100997.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Flávia Santina Pelissari Quinalha; Luciana Pelissari Manin; Marina Masetto Antunes; Guilherme Godoy; Marília Bellanda Galuch; Eloize Silva Alves; Omar Cléo Neves Pereira; Oscar Oliveira Santos; Roberto Barbosa Bazotte; Jesuí Vergílio Visentainer; Elton Guntendorfer Bonafe
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.