Possibilidades do uso da terra de diatomáceas na composição de materiais odontológicos: revisão integrativa
DOI:
https://doi.org/10.33448/rsd-v10i16.23846Palavras-chave:
Terra de Diatomáceas; Materiais Dentários; Odontologia.Resumo
Introdução: Dentre os avanços na Engenharia de materiais com fins odontológicos está a inclusão de novas e/ou subutlizadas matérias primas para a obtenção de melhores características físicas e, consequentemente, longevidade clínica dos produtos, uma destas é a terra de diatomáceas ou diatomita. Objetivo: Compilar as principais possibilidades de uso da diatomita na composição de materiais odontológicos. Metodologia: Realizou-se revisão integrativa, com busca de alta sensibilidade nas bases de dados: Medline via PubMed, Cochrane Wiley e Embase, e no portal: BVS, utilizando os descritores “Diatomaceous Earth” e “Dental Materials” na língua inglesa, assim como o sinônimo “Infusorial Earth” relacionados com operador booleano “AND”. A triagem dos artigos encontrados foi realizada por meio do aplicativo Rayyan®. Resultados: Foram encontrados 51 estudos. Após leitura do título, resumo e artigo na íntegra, apenas quatro estudos foram passíveis de inclusão. Não houve trabalhos que discorressem, especificamente, sobre o uso da terra de diatomácea em materiais odontológicos, porém, esses estudos apresentam a análise de materiais odontológicos e/ou biomateriais que possuem a diatomita. Os trabalhos inclusos foram publicados entre 2008 e 2014, sendo todos da língua inglesa. Conclusão: A terra de diatomáceas pode ser utilizada em diferentes tipos de materiais odontológicos, principalmente, com o objetivo de garantir melhores propriedades físicas, porém, ainda se faz necessária a realização de novas pesquisas para analisar suas possibilidades industriais.
Referências
Chain, M. (2013). Materiais Dentários (Série ABENO). Artes Médicas.
Choi, J. H., Kim, M. K., Woo, H. G., Song, H. J., & Park, Y. J. (2011). Modulation of physical properties of polyvinylsiloxane impression materials by filler type combination. Journal of Nanoscience and Nanotechnology, 11(2), 1547–1550. https://doi.org/10.1166/jnn.2011.3332
Ediz, N., Bentli, İ., & Tatar, İ. (2010). Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing, 94(3–4). https://doi.org/10.1016/j.minpro.2010.02.004
Elias, Z., Poirot, O., Fenoglio, I., Ghiazza, M., Danière, M., Terzetti, F., Darne, C., Coulais, C., Matekovits, I., & Fubini, B. (2006). Surface Reactivity, Cytotoxic, and Morphological Transforming Effects of Diatomaceous Earth Products in Syrian Hamster Embryo Cells. Toxicological Sciences, 91(2). https://doi.org/10.1093/toxsci/kfj177
Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. v. (2004a). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dental Materials, 20(5). https://doi.org/10.1016/j.dental.2003.05.003
Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. v. (2004b). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 20(5). https://doi.org/10.1016/j.dental.2003.05.002
Guiry, M. (1997). Book reviews. European Journal of Phycology, 32(2). https://doi.org/10.1080/09670269710001737139
Hadjadj-Aoul, O., Belabbes, R., Belkadi, M., & Guermouche, M. H. (2005). Characterization and performances of an Algerian diatomite-based gas chromatography support. Applied Surface Science, 240(1–4). https://doi.org/10.1016/j.apsusc.2004.06.108
Holmes, S. M., Graniel-Garcia, B. E., Foran, P., Hill, P., Roberts, E. P. L., Sakakini, B. H., & Newton, J. M. (2006). A novel porous carbon based on diatomaceous earth. Chemical Communications, 25. https://doi.org/10.1039/b600708b
Koga, T., Minamizato, T., Kawai, Y., Miura, K., I, T., Nakatani, Y., Sumita, Y., & Asahina, I. (2016). Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLOS ONE, 11(1). https://doi.org/10.1371/journal.pone.0147235
López-Álvarez, M., Solla, E. L., González, P., Serra, J., León, B., Marques, A. P., & Reis, R. L. (2009). Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 20(5), 1131–1136. https://doi.org/10.1007/s10856-008-3658-0
Losic, D., Mitchell, J. G., & Voelcker, N. H. (2009). Diatomaceous Lessons in Nanotechnology and Advanced Materials. Advanced Materials, 21(29). https://doi.org/10.1002/adma.200803778
Lu, X., Xia, Y., Liu, M., Qian, Y., Zhou, X., Gu, N., & Zhang, F. (2012). Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly. International Journal of Nanomedicine, 7, 2153–2164. https://doi.org/10.2147/IJN.S29851
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4
R. Jugdaohsingh. (2007). Silicon And Bone Health. J Nutr Health Aging, 11(2), 99–110.
Şan, O., Gören, R., & Özgür, C. (2009). Purification of diatomite powder by acid leaching for use in fabrication of porous ceramics. International Journal of Mineral Processing, 93(1). https://doi.org/10.1016/j.minpro.2009.04.007
Schröder, H. C., Wang, X. H., Wiens, M., Diehl-Seifert, B., Kropf, K., Schloßmacher, U., & Müller, W. E. G. (2012). Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): Inhibition of osteoclast growth and differentiation. Journal of Cellular Biochemistry, 113(10). https://doi.org/10.1002/jcb.24196
Solla, E. L., Borrajo, J. P., González, P., Serra, J., Chiussi, S., León, B., & López, J. G. (2007). Study of the composition transfer in the pulsed laser deposition of silicon substituted hydroxyapatite thin films. Applied Surface Science, 253(19). https://doi.org/10.1016/j.apsusc.2007.02.116
Souza, M. T. de, Silva, M. D. da, & Carvalho, R. de. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8(1). https://doi.org/10.1590/s1679-45082010rw1134
Wang, X., Schröder, H. C., & Müller, W. E. G. (2014). Enzyme-based biosilica and biocalcite: Biomaterials for the future in regenerative medicine. In Trends in Biotechnology 32(9), 441–447. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2014.05.004
Wiens, M., Wang, X., Schröder, H. C., Kolb, U., Schloßmacher, U., Ushijima, H., & Müller, W. E. G. (2010). The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials, 31(30). https://doi.org/10.1016/j.biomaterials.2010.07.002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Matheus da Silva Regis; Isabela Pinheiro Cavalcanti Lima; Talita da Silva Pinto ; Heloísa Pereira de Medeiros ; Hiully Karydja Câmara Oliveira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.