Diferentes estratégias para aumentar a produção de biossurfactante de um isolado de Paenibacillus sp. (BR13834)

Autores

DOI:

https://doi.org/10.33448/rsd-v10i17.24232

Palavras-chave:

DCCR; Biossurfactante; Paenibacillus sp.

Resumo

Os biossurfactantes são metabólitos produzidos por diversos microorganismos, e nos últimos anos estão atraindo um interesse na comunidade científica devido suas vantagens em relação aos surfactantes sintéticos. O presente estudo teve como objetivo incrementar a produção de biossurfactante por Paenibacillus sp., otimizando os fatores de crescimento fonte de carbono, pH, temperatura e tempo de cultivo. Inicialmente foram avaliadas as fontes de carbono glicose, lactose, azeite de oliva, óleo de soja, glicerol e querosene. Em seguida, foram avaliados os fatores pH, Temperatura e Tempo, utilizado um delineamento fatorial para a identificação dos fatores que influenciam o processo de produção de biossurfactante. Por fim, os fatores ambientais temperatura e tempo de cultivo foram avaliados usando delineamento central composto rotacional (DCCR). Em todos os ensaios foi utilizado o isolado BR13834 pertencente ao gênero Paenibacillus. O modelo de previsão empírica desenvolvido foi considerado adequado para descrever a produção de biossurfactante em relação à tensão superficial (R2 = 0,755). O valor mínimo para a tensão superficial foi de 34,6 mN/m, obtido nas condições ideais de 30 °C e 24 horas de cultivo. Os resultados demonstraram que o DCCR foi adequado para identificar as melhores condições de produção de biossurfactante produzido por Paenibacillus sp.

Biografia do Autor

Elisa Maria de Oliveira, Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá, AP, Brasil.

 Programa de pós-graduação Biodiversidade e Biotecnologia da Rede Bionorte (PPG-Bionorte)

Victor Hugo Gomes Sales, Instituto Federal do Amapá

Instituto Federal do Amapá, BR 210, km 03, Brasil Novo, 68909-398, Macapá, AP, Brasil.

Elora Dannan Corrêa Dias, Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá, AP, Brasil.

Wardsson Lustrino Borges, Embrapa Amapá, Macapá, AP; Embrapa Agroindústria Tropical, Fortaleza, CE

Embrapa Amapá, Rodovia Juscelino Kubitscheck, km 5, Universidade, CEP 68903-419, Macapá, AP, Brasil.

Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 Pici, CEP 60511-110 Fortaleza, CE, Brasil.

Marcelo Silva Andrade, Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá-AP, Brasil.

Tiago Marcolino de Souza , Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá-AP, Brasil.

Referências

Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Shibulal, B. (2014). Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 114, 324–333. doi: 10.1016/j.colsurfb.2013.09.022

Almeida, D. G., da Silva, R. de C. F. S., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2017). Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Frontiers in Microbiology, 8, 1–13. doi: 10.3389/fmicb.2017.00157

Amirabadi, S. S., Jahanmiri, A., Rahimpour, M. R., Nia, B. R., Darvishi, P., & Niazi, A. (2013). Investigation of Paenibacillus alvei ARN63 ability for biodemulsifier production: Medium optimization to break heavy crude oil emulsion. Colloids and Surfaces B: Biointerfaces, 109, 244–252. doi: 10.1016/j.colsurfb.2013.03.029

Bezerra, K. G. O., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2018). Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnology Progress, 34(6), 1482–1493. doi: 10.1002/btpr.2682

Bhardwaj, G., Cameotra, S. S., & Chopra, H. (2013). Biosurfactants from Fungi: A Review. Journal of Petroleum & Environmental Biotechnology, 04(06). doi: 10.4172/2157-7463.1000160

Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S. V., Senthilkumar, S. R., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99(17), 8170–8174. doi: 10.1016/j.biortech.2008.03.018

Deepika, K. V., Nagaraju, G. P., & Bramhachari, P. V. (2017). Optimization of cultural conditions for marine microbial biosurfactant production: Future prospects from untapped marine resources. In M. M. Naik & S. K. Dubey (Eds.), Marine Pollution and Microbial Remediation, 105–128. doi: 10.1007/978-981-10-1044-6_7

du Noüy, P. L. (1925). An interfacial tensiometer for universal use. The Journal of General Physiology, 7(5), 625–632. doi: 10.1085/jgp.7.5.625

Fontes, G. C., Amaral, P. F. F., Nele, M., & Coelho, M. A. Z. (2010). Factorial design to optimize biosurfactant production by yarrowia lipolytica. Journal of Biomedicine and Biotechnology, 2010, 1-8. doi: 10.1155/2010/821306

Garrido-López, Á., & Tena, M. T. (2005). Experimental design approach for the optimisation of pressurised fluid extraction of additives from polyethylene films. Journal of Chromatography A, 1099(1–2), 75–83. doi: 10.1016/j.chroma.2005.09.005

He, Z., Liu, G., Yang, X., & Liu, W. (2016). A novel surfactant, N,N-diethyl-N’-cyclohexylthiourea: Synthesis, flotation and adsorption on chalcopyrite. Journal of Industrial and Engineering Chemistry, 37, 107–114. doi: 10.1016/j.jiec.2016.03.013Jimoh, A. A., & Lin, J. (2018). Enhancement of Paenibacillus sp. D9 Lipopeptide biosurfactant production through the optimization of medium composition and its application for biodegradation of hydrophobic pollutants. Applied Biochemistry and Biotechnology, 187(3), 724–743. doi: 10.1007/s12010-018-2847-7

Joy, S., Butalia, T., Sharma, S., & Rahman, P. K. S. M. (2017). Biosurfactant producing bacteria from hydrocarbon contaminted environment. Chemical Engineering Journal, 317, 232-241. doi: 10.1016/j.cej.2017.02.054

Kiran, G. S., Thomas, T. A., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource Technology, 101(7), 2389–2396. doi: 10.1016/j.biortech.2009.11.023

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149–156. doi: 10.1016/S0167-7012(01)00259-7

Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2013). Exopolysaccharides and antimicrobial biosurfactants produced by paenibacillus macerans TKU029. Applied Biochemistry and Biotechnology, 172(2), 933–950. doi: 10.1007/s12010-013-0568-5

Montgomery, D. C. (2017). Design and analysis of experiments eighth edition. In Design (9th ed., Vol. 2). https://doi.org/10.1198/tech.2006.s372

Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24(11), 509–515. doi: 10.1016/j.tibtech.2006.09.005

Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., & Ghobadi, Z. (2010). Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chemical Engineering Journal, 163(3), 188–194. doi: 10.1016/j.cej.2010.06.044

Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., Soleimani, M., & Jamshidnejad, Z. (2011). Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids and Surfaces B: Biointerfaces, 82(1), 33–39. doi: 10.1016/j.colsurfb.2010.08.010

Omotayo, A. E., Egbomeade, L. O., Taiwo, O., Oyebamiji, O. O., & Ilori, M. O. (2013). Hydrocarbon degradation by free-living nitrogen-fixing bacteria. Journal of Scientific Research and Development, 14, 75–84.

Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28(2), 109–116. doi: 10.1016/j.bej.2005.06.001

Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings - A review. Materials and Design, 32(4), 1760–1775. doi: 10.1016/j.matdes.2010.11.013

Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Biosurfactant from Pseudomonas species with waxes as carbon source - Their production, modeling and properties. Journal of Industrial and Engineering Chemistry, 31, 100–111. doi: 10.1016/j.jiec.2015.06.013

Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 1–31. doi: 10.3390/ijms17030401

Santos, L. F. M. dos., Coutte, F., Ravallec, R., Dhulster, P., Tournier-Couturier, L., & Jacques, P. (2016). An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresource Technology, 218, 944–952. doi: 10.1016/j.biortech.2016.07.053

Satpute, S. K., Płaza, G. A., & Banpurkar, A. G. (2017). Biosurfactants’ production from renewable natural resources: Example of innovativeand smart technology in circular bioeconomy. Management Systems in Production Engineering, 25(1), 46–54. doi: 10.1515/mspe-2017-0007

Wang, X., Huang, L., Kang, Z., Buchenauer, H., & Gao, X. (2010). Optimization of the fermentation process of actinomycete strain Hhs.015(T). Journal of Biomedicine and Biotechnology, 2010, 1-10. doi: 10.1155/2010/141876

Wang, C. L., Huang, T. H., Liang, T. W., Fang, C. Y., & Wang, S. L. (2011). Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology, 28(6), 559–565. doi: 10.1016/j.nbt.2011.03.003

Downloads

Publicado

20/12/2021

Como Citar

OLIVEIRA, E. M. de; SALES, V. H. G.; DIAS, E. D. C.; BORGES, W. L.; ANDRADE, M. S. .; SOUZA , T. M. de . Diferentes estratégias para aumentar a produção de biossurfactante de um isolado de Paenibacillus sp. (BR13834). Research, Society and Development, [S. l.], v. 10, n. 17, p. e44101724232, 2021. DOI: 10.33448/rsd-v10i17.24232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24232. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas