Aplicações de inteligência artificial na determinação de parâmetros de resistência ao cisalhamento do solo: um mapeamento sistemático da literatura
DOI:
https://doi.org/10.33448/rsd-v11i1.24506Palavras-chave:
Mapeamento sistemático; Resistência ao cisalhamento; Inteligência artificial.Resumo
A investigação da resistência ao cisalhamento dos solos é tarefa corriqueira em diversos projetos de Engenharia Geotécnica, e.g. fundações, estabilidade de taludes e estruturas de contenção. Ela é usualmente conduzida por meio de ensaios padronizados de campo e/ou laboratório. Nos dois casos, trata-se de uma tarefa que demanda tempo e possui um custo associado a ela. Diversos estudos podem ser encontrados na literatura em que ferramentas de inteligência artificial são usadas como alternativa à execução desses ensaios. Este artigo apresenta um mapeamento sistemático da literatura sobre esse assunto. Os tipos de algoritmo e os parâmetros geotécnicos empregados para estimar a resistência ao cisalhamento do solo foram identificados com base nos dados extraídos da literatura. Foi possível listar 17 técnicas aplicadas a diferentes tipos de solo. Os resultados desses estudos encontram-se de acordo com dados obtidos por meio de ensaios geotécnicos reais, de laboratório e de campo. Isso demonstra o potencial de uso de inteligência artificial para estimar a resistência ao cisalhamento dos solos.
Referências
American Association of State and Highway Trasportation Officials (2008). AASHTO T 236-08: Standard Method of Test for Direct Shear Test of Soils Under Consolidated Drained Conditions. Washington, DC.
American Society for Testing and Materials (2020a). ASTM D 3080-11: Standard Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. Filadélfia: ASTM International.
American Society for Testing and Materials (2015). ASTM D 2850-15: Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. Filadélfia: ASTM International.
American Society for Testing and Materials (2020b). ASTM D 7181-20: Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. Filadélfia: ASTM International.
American Society for Testing and Materials (2020c). ASTM D 4767-20: Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. Filadélfia: ASTM International.
British Standards Institution (1990). BS 1377-7: Methods of test for Soils for civil engineering purposes – Part 7: Shear strength tests (totals stress). London: Britsh Standards Institution.
Basheer, I. A. & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal Of Microbiological Methods, [s.l.], 43(1), 3-31.
Bui, D. T., Hoang, N. & Nhu, V. (2018). A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Engineering With Computers, [s.l.], 1-11.
CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Portal de Periódicos Capes. Brasil. Recuperado de http://www.periodicos.capes.gov.br/.
Chenari, R. J., Tizpa, P., Rad, M. R. G., Machado, S. L. & Fard, M. K. (2014). The use of index parameters to predict soil geotechnical properties. Arabian Journal Of Geosciences, [s.l.], 8(7), 4907-4919.
Das, S. K. (2013) Artificial Neural Networks in Geotechnical Engineering: Modeling and Application Issues: Metaheuristics in Water. Geotechnical And Transport Engineering, Londres, p.231-270.
Das, S. K. & Bashudhar, P. K. (2008). Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, [s.l.], 100(3-4), 142-145.
Eiben, A. E. & Smith, J. (2015). From evolutionary computation to the evolution of things. Nature, [s.l.], 521(7553), 476-48.
Fatehnia, M. & Amirinia, G. (2018). A review of Genetic Programming and Artificial Neural Network applications in pile foundations. International Journal Of Geo-engineering, [s.l.], 9(1), 1-20.
Fredlund, D. G. & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. New York: John Wiley & Sons, Inc, 507 p.
Garven, E. A. (2009). Review of the empirical equations for predicting the shear strength of unsaturated soils. Tese de Doutorado Curso de Engenharia Civil, Faculdade de Engenharia, Universidade de Otawa, Otawa.
Gerscovich, D M. S. (2010). Resistência ao Cisalhamento. Rio de Janeiro: Feuerj. Recuperado de http://www.eng.uerj.br/~denise/pdf/resistenciacisalhamento.pdf.
Goktepe, A. B., Altun, S., Altintas, G. & Tan, O. (2008). Shear strength estimation of plastic clays with statistical and neural approaches. Building And Environment, [s.l.], 43(5), 849-860.
Holanda, M. J. O., Ferreira, S. R. M., Amorim, S. F., Borges, J. J. S. & Silva, L. F. (2021). Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco. Research, Society and Development [s.1.], 10(15), e110101522541. DOI: 10.33448/rsd-v10i15.22541
Iyeke, S. D., Eze, E. O., Ehiorobo, J. O. & Osuji, S.O. (2016). Estimation Of Shear Strength Parameters Of Lateritic Soils Using Artificial Neural Network. Nigerian Journal Of Technology, [s.l.], 35(2), 260-269.
Jokar, M. H. & Mirasi, S. (2017). Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength. Soft Computing, [s.l.], 22(13), 4493-4510.
Kanungo, D. P., Sharma, S. & Pain, A. (2014). Artificial Neural Network (ANN) and Regression Tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters. Frontiers Of Earth Science, [s.l.], 8(3), 439-456.
Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. & Ozvan, A. (2009). Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Systems With Applications, [s.l.], 36(9), 11814-11826.
Khan, S.Z, Suman, S., Pavani, M. & Das, S. K. (2016). Prediction of the residual strength of clay using functional networks. Geoscience Frontiers, [s.l.], 7(1), 67-74.
Khanlari, G.R., Heidari, M., Momeni, A. A. & Abdilor, Y. (2012). Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, [s.l.], 131-132, 11-18.
Kiran, S. & Lal, B. (2015). ANN based Prediction of Shear Strength of Soil from their index properties. International Journal of Earth Sciences and Engineering, [s.l.].
Kiran, S., LAL, B. & Tripathy, S.S. (2016). Shear Strength Prediction of Soil based on Probabilistic Neural Network. Indian Journal Of Science And Technology, [s.l.], 9(41).
Kitchenham, B. & Charters., S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report. Durham: EBSE.
Kohavi, R. & Provost, F. (1998). Glossary of Terms. Machine Learning, Boston, 30, 271-274.
Leroueil, S. (2001). Natural slopes and cuts: movement and failure mechanisms. Géotechnique, [s.l.], 51(3), 197-243.
Lu, P., Chen, S. & Zheng, Y. (2012). Artificial Intelligence in Civil Engineering. Mathematical Problems In Engineering, [s.l.], 2012, 1-22.
Mollahasani, A., Alavi, A. H., Gandomi, A. H. & Rashed, A. (2011). Nonlinear neural-based modeling of soil cohesion intercept. Ksce Journal Of Civil Engineering, [s.l.], 15(5), 831-840.
Mousavi, S. M., Alavi, A. H., Gandomi, A. H. & Arab Esmaeili, M. (2011). Formulation of soil angle of shearing resistance using a hybrid GP and OLS method. Engineering With Computers, [s.l.], 29(1), 37-53.
Mousavi, S. M., Alavi, A. H., Gandomi, A. H. & Mollahasani, A. (2011). Nonlinear genetic-based simulation of soil shear strength parameters. Journal Of Earth System Science, [s.l.], 120(6), 1001-1022.
Pessoa, A. D., Sousa, G. C. L., Araujo, R. C. & Anjos, G. J. M. (2021). Artificial neural network model for predicting load capacity of driven piles. Research, Society and Development, [s.1.], 10(1), e12210111526. DOI: 10.33448/rsd-v10i1.11526
Petersen, K., Vakkalanka, S. & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information And Software Technology, [s.l.], 64, 1-18.
Pham, B. T., Son, L. H., Hoang, T.A., Nguyen, D. M. & Bui, D, T. (2018). Prediction of shear strength of soft soil using machine learning methods. Catena, [s.l.], 166, 181-191.
Pinto, C. de S. (2006). Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos.
Poole, D., Macworth, A. & Goebel, R. (1998). Computational intelligence: A logical approach. Nova York: Oxford University Press.
Sezer, A. (2011). Simple models for the estimation of shearing resistance angle of uniform sands. Neural Computing And Applications, [s.l.], 22(1), 111-123.
Shahin, M. A., Jaksa, M. B. & Maier, H. R. (2009). Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances In Artificial Neural Systems, [s.l.], 2009, 1-9.
Terzaghi, K. & Peck, R. B. (1948). Soil Mechanics in Engineering Practice. 3. ed. Nova York: John Wiley & Sons Inc.
Tizpa, P., Chenari, R. J. & Fard, M. K. & Machado, S. L. (2014). ANN prediction of some geotechnical properties of soil from their index parameters. Arabian Journal Of Geosciences, [s.l.], 8(5), 2911-2920.
Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E. & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, [s.l.], 33(3), 379-392.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Matheus Gomes Carvalho; Eduardo Matthews do Rego Barreto; José Ailton da Costa Ferreira; Fagner Alexandre Nunes de França; Osvaldo de Freitas Neto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.