Biodegradação do petróleo por células bacterianas imobilizadas em esferas de amido de milho e alginato
DOI:
https://doi.org/10.33448/rsd-v10i17.24706Palavras-chave:
Biodegradação; Imobilização de célula; Matriz polimérica; Hidrocarbonetos.Resumo
As células imobilizadas apresentam vantagens na remoção de hidrocarbonetos do petróleo, quando comparadas ao uso de células livres. Este trabalho teve como objetivo avaliar o potencial de degradação de hidrocarbonetos por bactérias imobilizadas em matrizes de suporte compostas de alginato de potássio comercial e amido de milho. A matriz polimérica imobilizadora foi desenvolvida com alginato dental 2% e amido de milho 0,5% e 1%. As matrizes apresentam macroporos internamente, boa capacidade de imobilizar células, aumento da respiração basal (F2 e F3: 4 mg / l CO2 60 dias), biomassa bacteriana (F1: 1,5 x 106 UFC / g 60 dias) e remoção de n-alcanos e HPAs do sedimento, quando comparados às células livres (0 mg / l CO2; 0,3 x 106 UFC / g 60 dias). Os hidrocarbonetos aromáticos benzo (a) antraceno e antraceno não foram degradados. Naftaleno e dibenzo (a) antraceno atingiram taxas de degradação de 60% e 80%, respectivamente. Portanto, o consórcio testado e a matriz polimérica desenvolvida são promissores para uso na biorremediação de ambientes contaminados por hidrocarbonetos.
Referências
Abasian, F.; Lockington, R.; Mallavarapu, M.; & Naidu, R. (2015). A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochemistry and Biotechnology, 176, 670-699.
Alef, K. & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic.
Banerjee, S.; Banerjee, A.; & Sarkar, P. (2018). Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53 (5), 436–442. https://doi.org/10.1080/10934529.2017.1409009.
Bayat, Z.; Hassanshahian, M.; & Cappello, S. (2015). Immobilization of microbes for bioremediation of crude oil polluted environments: A Mini Review. The Open Microbiology Journal, 9, 48–54. https://doi.org/10.2174/1874285801509010048.
Bučková, M.; Puškarová, A.; Chovanová, K.; Kraková, L.; Ferianc, P.; & Pangallo, D. (2013). A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil. World Journal of Microbiology and Biotechnology, 29 (6), 1085–1098. https://doi.org//10.1007/s11274-013-1277-5.
Chen, L.; Zhao, S.; Yang, Y.; Li, L.; & Wang, D. (2019). Study on degradation of oily wastewater by immobilized microorganisms with biodegradable polyacrylamide and sodium alginate mixture. ACS Omega, 4 (12), 15149–15157. https://doi.org/10.1021/acsomega.9b02045.
Chen, Y.; Yu, B.; Lin, J.; Naidu, R.; & Chen, Z. (2016). Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 289 (1), 463–470. https://doi.org/10.1016/j.cej.2016.01.010.
Cunha, C. D.; Rosado, A. S.; Sebastián, G.V.; Seldin, L.; & Weid, I. (2006). Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Applied Microbiology and Biotechnology, 73, 949–959.
De la Cueva, S. C.; Rodríguez, C. H.; Cruz, N. O .S.; Contreras, J. A. R.; & Miranda, J. L. (2016). Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, and Soil Pollution, 227 (91). https://doi.org/10.1007/s11270-016-2789-z.
De Vos, P.; Lazarjani, H. A.; Poncelet, D.; Faas, M. M. (2014). Polymers in cell encapsulation from an enveloped cell perspective. Advanced Drug Delivery Reviews, 67–68, 15–34. http://dx.doi.org/10.1016/j.addr.2013.11.005.
Deka, H. & Lahkar, J. (2016). Biodegradation of benzo(a)anthracene employing Paenibacillus sp. HD1PAH: A novel strain isolated from crude oil contaminated soil. Polycyclic Aromatic Compounds, 37 (2–3), 161–169. https://doi.org/10.1080/10406638.2016.1253593.
Elnashar, M. M. M. (2010). Review Article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61–77. https://doi.org/10.4236/ jbnb.2010.11008.
Elumalai, P.; Parthipan, P.; Karthikeyan, O. P.; & Rajasekar, A. (2017). Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech, 7, 116.
Fareez, I. M.; Lim, S. M.; Mishra, R.K.; & Ramasamy, K. (2015). Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419–1428. https://doi.org/10.1016/j.ijbiomac.2014.10.054.
Gbassi, G. K.; Vandamme, T.; Ennahar, S.; & Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129 (1), 103–105. https://doi.org/10.1016/j.ijfoodmicro.2008.11.012.
Ghazali, F. M.; Rahman, R. Z. A.; Salleh, A. B.; & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation, 54 (1), 61–67. https://doi.org/10.1016/j.ibiod.2004.02.002.
Hanson, K. G.; Desai, J. D.; & Desai, A .J. (1993). A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology Techniques, 7 (10), 745–748. https://doi.org/10.1007/BF00152624.
Isaac, P.; Martínez, F. L.; Bourguignon, N.; Sánchez, L .A.; & Ferrero, M.A . (2015). Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. International Biodeterioration and Biodegradation, 101, 23–31. https://doi.org/10.1016/j.ibiod.2015.03.014.
Jackson, D.A . (1993). Stopping rules in Principal Components Analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214. https://doi.org/10.2307/1939574.
Jauhari, N.; Mishra, S.; Kumari, B.; Singh, S.N.; Chauhan, P.S.; & Upreti, D.K. (2020). Bacteria induced degradation of anthracene mediated by catabolic enzymes. Polycyclic Aromatic Compounds, 40 (2), 313–325. https://doi.org/10.1080/10406638.2017.1420667.
Karabika, E.; Kallimanis, A.; Dados, A.; Pilidis, G.; Drainas, C.; & Koukkou, A. I. (2009). Taxonomic identification and use of free and entrapped cells of a new Mycobacterium sp., strain Spyr1 for degradation of polycyclic aromatic hydrocarbons (PAHs). Applied Biochemistry and Biotechnology, 159 (1), 155–167. https://doi.org/10.1007/s12010-008-8463-1.
Karigar, C. S. & Rao, S. S.; (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 805187. https://doi.org/10.4061/2011/805187.
Kureel, M. K.; Geed, S. R.; Giri, B. S.; Rai, B. N.; & Singh, R. S. (2017). Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3. Bioresource Technology, 242, 92–100. https://doi.org/10.1016/j.biortech.2017.03.167.
Legendre, P. & Legendre, L. (2012). Numerical Ecology, third ed., Elsevier, Amsterdam.
Li, N.; Xu, H.; Yang, Y.; Xu, X.; & Xue, J. (2019). Preparation, optimization and reusability of immobilized petroleum-degrading bacteria. Environmental Technology (United Kingdom), 1–11 https://doi.org/10.1080/09593330.2019.1703826.
Liu, S-H.; Zeng, Z-T.; Niu, Q-Y.; Xiao, R.; Zeng, G-M.; Liu, Y.; Cheng, M.; Hu, K.; Jiang, L-H.; Tan, X-F.; & Tao, J-J. (2019). Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). Science of the Total Environment, 655, 1279–1287. https://doi.org/10.1016/j.scitotenv.2018.11.272.
Lofthus, S.; Netzer, R.; Lewin, A.S.; Heggeset, T.M.B.; Haugen, T.; & Brakstad, O.G. (2018). Biodegradation of n-alkanes on oil–seawater interfaces at different temperatures and microbial communities associated with the degradation. Biodegradation, 29 (2), 141–157. https://doi.org/10.1007/s10532-018-9819-z.
Maqbool, F.; Wang, Z.; Xu, Y.; Zhao, J.; Gao, D.; Zhao, Y-G.; Bhatti, Z.A.; & Xing, B. (2012). Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, 237–238 (30), 262–269. https://doi.org/10.1016/j.jhazmat.2012.08.038.
Ramadass, K.; Megharaj, M.; Venkateswarlu, K.; & Naidu, R. (2016). Soil bacterial strains with heavy metal resistance and high potential in degrading diesel oil and n-alkanes. International Journal of Environmental Science and Technology, 13 (12), 2863-2874.
Rehm, H. J. & Reiff, I. (1981). Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Advances in Biochemical Engineering, 19, 175–215. https://doi.org/10.1007/3-540-10464-X_18.
Sampaio, C. J. S.; Souza, J. R. B.; Carvalho, G. C.; Quintella, C. M.; & Roque, M. R. A. (2019a). Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida): Implications for NPK fertilizer supplementation. Journal of Environmental Management, 246 (15), 617–624. https://doi.org/10.1016/j.jenvman.2019.06.018.
Sampaio, C. J. S.; Souza, J. R. B.; Damião, A. O.; Bahiense, T. C.; & Roque, M. R. A. (2019b). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a diesel oil-contaminated mangrove by plant growth-promoting rhizobacteria. 3 Biotech, 9 (4). https://doi.org/10.1007/s13205-019-1686-8.
Sampaio, C. J. S., Roque, M. R. A., Souza, J. R. B, Carvalho, G. C., & Vale, T. O. (2019) Patent deposit PI national BR102019013058-0, in secrecy phase.
Shen, T.; Pi, Y.; Xu, N.; Li, Y.; & Lu, J. (2015). Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environmental Sciences: Processes and Impacts, 17 (12), 2022–2033. https://doi.org/10.1039/C5EM00318K.
Simons, K. L.; Sheppard, P. J.; Adetutu, E. M.; Kadali, K.; Juhasz, A. L.; Manefield, M.; Sarma, P. M.; Lal, B.; & Ball, A.S . (2013). Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. Bioresource Technology, 134, 107–116. https://doi.org/10.1016/j.biortech.2013.01.
Su, D.; Li, P .J.; Frank, S.; & Xiong, X. Z. (2006). Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. Journal of Environmental Sciences (China), 18 (6), 1204–1209. https://doi.org/10.1016/S1001-0742(06)60063-6.
Varjani, S.; & Upasani, V. N. (2020). Soil microcosm study for bioremediation by a crude oil degrading Pseudomonas aeruginosa NCIM 5514. Journal of Environmental Engineering (United States), 146 (5). https://doi.org/10.1061/(asce)ee.1943-7870.0001687.
Wang, Z-Y.; Xu, Y.; Wang, H-Y.; Zhao, J.; Gao, D-M.; Li, F-M.; & Xing, B. (2012). Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere, 22 (5), 717–725. https://doi.org/10.1016/S1002-0160(12)60057-5.
Xu, X.; Zhou, H.; Chen, X.; Wang, B.; Jin, Z.; & Ji, F. (2019). Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent. Chemosphere, 223, 140–147. https://doi.org/10.1016/j.chemosphere.2019.01.196.
Xue, J.; Wu, Y.; Fu, X.; Li, N.; Sun, J.; & Qiao, Y. (2020). Study on degradation characteristics and bacterial community structure changes of immobilized cells in straw-alginate beads in marine environment. Bioresource Technology Reports, 10, 100402. https://doi.org/10.1016/j.biteb.2020.100402.
Zhang, Y.; Gao, W.; Lin, F.; Han, B.; He, C.; Li, Q.; Gao, X.; Cui, Z.; Sun, C.; & Zheng, L. (2018). Study on immobilization of marine oil-degrading bacteria by carrier of algae materials. World Journal of Microbiology and Biotechnology, 34 (6). https://doi.org/10.1007/s11274-018-2438-3.
Zommere, Ž. & Nikolajeva, V. (2017). Immobilization of bacterial association in alginate beads for bioremediation of oil-contaminated lands. Environmental and Experimental Biology, 15, 105-111. https://doi.org/10.22364/eeb.15.09.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Carla Jaqueline Silva Sampaio; José Roberto Bispo de Souza; Gilson Correia de Carvalho; Cristina Maria Quintella; Milton Ricardo de Abreu Roque
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.