Avaliação de duas cepas de levedura nativas do brasil (Pichia kudriavzevii) em bioaromatização de cerveja artesanal

Autores

DOI:

https://doi.org/10.33448/rsd-v11i1.24783

Palavras-chave:

Bioaromatização; Levedura; Compostos orgânicos voláteis; Marque todas as opções aplicáveis; Análise sensorial.

Resumo

A produção de cerveja é um processo biotecnológico milenar e, desde que se descobriu que a levedura é a responsável pela transformação do mosto de cevada em cerveja, estudos têm sido realizados com o objetivo de compreender o comportamento desses microrganismos. Este trabalho teve como objetivo estudar a aplicação de duas cepas de leveduras da espécie Pichia kudriavzevii, isoladas no Centro-Oeste brasileiro para a produção de cerveja artesanal e analisar a ocorrência de bioaromatização, com a produção de compostos orgânicos voláteis (VOC) e avaliar a percepção sensorial dos resultados com consumidores finais destreinados por meio de uma metodologia sensorial rápida chamada Check All That Apply (CATA). Para tanto, foram produzidos três lotes de cerveja inoculados com levedura comercial (Saccharomyces cerevisiae, a testemunha) e duas linhagens da mesma espécie, denominadas Pichia kudriavzevii BB1 e Pichia kudriavzevii BB2. Foram detectados 28 compostos orgânicos voláteis que diferenciaram o controle do grupo Pichia BB1 / BB2, sendo 20 ésteres, 2 álcoois, 5 ácidos carboxílicos e 1 hidrocarboneto. Não houve diferença entre as amostras de Pichia kudriavzevii BB1 e BB2 (p> 0,05) na análise sensorial pela metodologia CATA. Foi possível distinguir dois clusters entre os provadores de acordo com o hábito de consumir cerveja artesanal, e os que consumiam com frequência, atribuíram maior pontuação no teste hedônico. Concluiu-se que Pichia kudriavzevii BB1 e BB2 influenciaram na bioaromatização da cerveja, melhorando a pontuação no teste de aceitação com os provadores.

Biografia do Autor

Samara Teodoro dos Santos, Universidade Federal da Grande Dourados

Universidade Federal da Grande Dourados, Faculdade de Engenharia, Rodovia Dourados - Itahum, km 12, 79804-970 MS, Brazil

Marcelo Fossa da Paz, Universidade Federal da Grande Dourados

Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Rodovia Dourados - Itahum, km 12, 79804-970 MS, Brazil

Ângela Dulce Cavenaghi Altemio, Universidade Federal da Grande Dourados

Universidade Federal da Grande Dourados, Faculdade de Engenharia, Rodovia Dourados - Itahum, km 12, 79804-970 MS, Brazil

Referências

Alexi, N., Nanou, E., Lazo, O., Guerrero, L., Grigorakis, K. & Byrne, D. V. (2018). Check-All-That-Apply (CATA) with semi-trained assessors: Sensory profiles closer to descriptive analysis or consumer elicited data? Food Quality and Preference, 64, 11–20. http://dx.doi.org/10.1016/j.foodqual.2017.10.009.

Ares, G. & Jarger, S. R. (2015). Check-all-that-apply (CATA) questions with consumers in practice: experimental considerations and impact on outcome. Rapid Sensory Profiling Techniques, 227-245. http://dx.doi.org/10.1533/ 9781782422587.2.227.

Ares, G., Barreiro, C., Deliza, R., Giménez, A. & Gámbaro, A. (2010). Application of a check-all-that-apply question to the development of chocolate milk desserts. Journal of Sensory Studies, 55(1), 67-86. http://dx.doi.org/10.1111/j.1745-459x.2010.00290.x.

Bamforth, C. W., Russell, I., Stewart, G. (2008). Beer: A quality perspective. Academic Press. 287 p. (Handbook of Alcoholic Beverages).

Briggs, D. E., Boulton, C. A. & Brookes, P. A. (2004). Brewing Science and Practice. Abington: Woodhead Publishing Limited, 2004. 983 p.

Brunelli, L. T., Manzano, A. L. & Venturini-Filho, W. G. (2014). Caracterização físico-química de cervejas elaboradas com mel. Brazilian Journal of Food Technology, 17(1), 19-27. https://doi.org/10.1590/bjft.2014.004.

Callaway, E. (2016). The beer geeks: a lab in Belgium is using genetics to make the perfect beer yeast. Nature, 535, 484-487.

Camargo, J. Z., Nascimento, V. M., Stefanello, I., Silva, C. A. A., Gonçalves, F. A., Perdomo, I. C., Vilela, D. M., Simionatto, S., Pereira, R. M., Paz, M. F. Leite, R. S. R., Gelinski, J. M. L. N., Fonseca G. G. (2018). Biochemical evaluation, molecular characterization and identification of novel yeast strains isolated from Brazilian savannah fruits, chicken litter and a sugar and alcohol mill with biotechnological potential for biofuel and food industries. Biocatalysis and Agricultural Biotechnology, 16, 390-399. http://dx.doi.org/10.1016/j.bcab.2018.09.006.

Canonico, L., Agarbati, A., Comitini, F. & Ciani, M. (2016). Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiology, 56, 45-51. http://dx.doi.org/10.1016/j.fm.2015.12.005.

Capece, A., Romaniello, R., Siesto, G & Romanno, P. (2018). Conventional and non-conventional yeasts in beer production. Fermentation, 4(2), 38-112. http://dx.doi.org/10.3390/fermentation4020038.

CHr. Hansen A/S. (2013). Sofie Sarens, Jan Hendrik Swiegers. Enhancement of beer flavor by a combination of Ppichia yeast and different hop varieties. US nº WO2013030398A1.

Ciani, M. & Comitini, F. (2010). Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Annals of Microbiology, 61(1) 25-32. http://dx.doi.org/10.1007/s13213-010-0069-5.

Conway, J. (2018). Craft beer breweries per capita in the United States in 2018, by state. Statista. Estados Unidos. https://www.statista.com/statistics/319978/craft-beer-breweries-per-capita-in-the-us-by-state/.

Coote, N. & Kirsop, B. H. (1976). Factors responsible for the decrease in ph during beer fermentations. Journal of The Institute of Brewing, 82(3), 149-153. http://dx.doi.org/10.1002/j.2050-0416.1976.tb03739.x.

Donadini, G. & Porretta, S. (2017). Uncovering patterns of consumers' interest for beer: a case study with craft beers. Food Research International, 91, 183-198. http://dx.doi.org/10.1016/j.foodres.2016.11.043.

Elzinga, K. K. G., Tremblay, C. H., Tremblay, V. J. (2015). Craft Beer in the United States: History, Numbers, and Geography. Journal of Wine Economics, 10(3), 242-274. http://dx.doi.org/10.1017/jwe.2015.22.

Garcia, M.M.E. (2017). Produção de cerveja: Utilização de estirpes não convencionais em co-fermentação com Saccharomyces para potenciação do perfil sensory de diversos tipos de cerveja. 2017. 119 f. Dissertação (Mestrado) - Curso de Engenharia Alimentar – Processamento de Alimentos, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa.

Gonçalves, M., Pontes, A., Almeida, P., Barbosa, R., Serra, M., Libkind, D., Hutzler, M., Gonçalves, P., Sampaio, J. P. (2016). Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts. Current Biology, 26(20), 2750-2761. http://dx.doi.org/10.1016/j.cub.2016.08.040.

Kaneda, H., Takashio, M., Tamaki, T. & Osawa, T. (1997). Influence of ph on flavour staling during beer storage. Journal of The Institute of Brewing, 103(1), 21-23. http://dx.doi.org/10.1002/j.2050-0416.1997.tb00932.x

Klopper, W. J., Angelino, S. A. G. F., Tuning, B. & Vermeire, H. A. (1986). Organic acids and glycerol in beer. Journal of The Institute of Brewing, 92(3), 225-228. Wiley. http://dx.doi.org/10.1002/j.2050-0416.1986.tb04405.x.

Kunze, W. (2004). Technology Brewing and Malting. (3a ed.), VLB.

Kurtzman, C., Fell, J.W., Boekhout, T. (2011). The yeasts: a taxonomic study. Elsevier, 1, 5°ed.

Liobell, F., Giacalone, D., Labenne, A. & Qannari, E. M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190. http://dx.doi.org/10.1016/j.foodqual.2019.05.017.

Liu, S.-Q. & Quek, A. Y. H. (2016). Evaluation of beer fermentation with a novel yeast Williopsis saturnus. Food Technology and Biotechnology, 54(4), 403-412. http://dx.doi.org/10.17113/ftb.54.04.16.4440.

Mander, L., & Liu, H. (2010). Comprehensive natural products II: chemistry and biology. Chemistry and biology. Austin: Elsevier, 10 v.

Marcusso, E. F., Müller, C. V. (2018). Anuário da cerveja no Brasil 2018: Crescimento e Inovação. http://www.agricultura.gov.br/vassuntos/inspecao/produtos-vegetal/pasta-publicacoes-DIPOV/anuario-da- cerveja-no-brasil-2018.

Martins, C., Brandão, T., Almeida, A. & Rocha, S. M. (2015). Insights on beer volatile profile: Optimization of solid-phase microextraction procedure taking advantage of the comprehensive two-dimensional gas chromatography structured separation. Journal of Separation Science, 38(12), 2140- 2148. http://dx.doi.org/10.1002/jssc.201401388.

Monaco, S. M., Barda, N. B., Rubio, N. C. & Caballero, A. C. (2014). Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification. Journal of Applied Microbiology, 117(2), 451-464. http://dx.doi.org/10.1111/jam.12547.

Mónaco, S. M., Rodríguez, M. E., Lopes, C.A. (2016). Pichia kudriavzevii as a representative yeast of North Patagonian winemaking terroir. International Journal of Food Microbiology, 230, 31-39. http://dx.doi.org/10.1016/j.ijfoodmicro.2016.04.017.

Osburn, K., Amaral, S., Metcalf, S. R., Nickens, D. M., Rogers, C. M., Sausen, C., Caputo, R., Miller, J. Li, H., Tennessen, J. M., Bochman, M. L. (2018). Primary souring: A novel bacteria-free method for sour beer production. Food Microbiology, 70, 76-84. http://dx.doi.org/10.1016/j.fm.2017.09.007.

Paine, A. J. & Dayan, A. D. (2001). Defining a tolerable concentration of methanol in alcoholic drinks. Human & Experimental Toxicology, 20(11), 563-568. http://dx.doi.org/10.1191/096032701718620864.

Palmer, J. J. (2017). How To Brew: Everything You Need to Know to Brew Great Beer Every Time. (4a ed.), Boulder: Brewers Publications. 582 p.

Papazian, C. (2014). The complete joy of homebrewing. (4a ed.), Harper USA. 467 p.

Perfumer & Flavorist (2018). The Sensory Resource for Flavor & Fragrance Leaders: The Good Scents Company Information System. Estados Unidos. https://www.perfumerflavorist.com.

Pinu, F. R. & Villas-Boas, S. G. (2017). Extracellular Microbial Metabolomics: The State of the Art. Metabolites, 7(3), 43. http://dx.doi.org/10.3390/metabo7030043.

Pires, E. J., Teixeira, J. A., Brányik, T. & Vicente, A. A. (2014). Yeast: the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Applied Microbiology and Biotechnology, 98(5), 1937-1949. http://dx.doi.org/10.1007/s00253-013-5470-0.

Pizarro, C., Pérez-Del-Notario, N., González-Sáiz, J. M. (2010). Optimisation of a simple and reliable method based on headspace solid-phase microextraction for the determination of volatile phenols in beer. Journal of Chromatography A, 121(39), 6013-6021. http://dx.doi.org/10.1016/j.chroma.2010.07.021.

Ramsey, I., Ross, C., Ford, R., Fisk, I., Yang, Q., Gomez-Lopez, J. & Hort, J. (2018). Using a combined temporal approach to evaluate the influence of ethanol concentration on liking and sensory attributes of lager beer. Food Quality and Preference, 68, 292-303. http://dx.doi.org/10.1016/j.foodqual.2018.03.019.

Riu-Aumatell, M., Miró, P., Serra-Cayuela, A., Buxaderas, S., López-Tamames, E. (2014). Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Research International, 57, 196-202. http://dx.doi.org/10.1016/j.foodres.2014.01.016.

Rossi, S., Sileoni, V, Perreti, G. & Marconi, O. (2013). Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Journal of The Science of Food and Agriculture, 94(5), 919- 928. http://dx.doi.org/10.1002/jsfa.6336.

Santos, S. P. (2003). Os Primórdios da Cerveja no Brasil. Cotia: Ateliê Editorial. 56 p.

Silva, G. A., Augusto, F. & Poppi, R. J. (2008). Exploratory analysis of the volatile profile of beers by HS–SPME–GC. Food Chemistry, 111(4), 1057-1063. http://dx.doi.org/10.1016/ j.foodchem.2008.05.022.

Silva, R. O., Batistote, M., Cereda, M. P. (2011). Wild strains of fermenting yeast isolated of sugar cane juice from an alcohol distillery from Mato Grosso, Brazil. Journal of Biotechnology and Biodiversity, 3(2), 22-27. https://sistemas.uft.edu.br/periodicos/index.php/JBB/article/view/ 241/173.

Steensels, J., Verstrepen, K. J. (2014). Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annual Review of Microbiology, 68(1), 61-80, http://dx.doi.org/10.1146/annurev-micro-091213-113025.

The Good Scents Company. (2019). The Good Scents Company Information System. http://www.thegoodscentscompany.com/search2.html.

Van Rijswijck, I. M. H., Wolkers-Rooijackers, J. C. M., Abee, T. & Smid, E. J. (2017). Performance of non-conventional yeasts in co- culture with brewers’ yeast for steering ethanol and aroma production. Microbial Biotechnology, 10(6), 1591-1602. http://dx.doi.org/10.1111/1751-7915.12717.

Varela, C. (2016). The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Applied Microbiology and Biotechnology, 100(23), 9861-9874. http://dx.doi.org/10.1007/s00253-016-7941-6.

Venturini F. W. G., Cereda, M. P. (2001). Cerveja. In: Aquarone, E., Borzani, W., Schimidell, W., Lima, U. A. Biotecnologia Industrial: Biotecnologia na Produção de Alimentos. Edgard Blucher. 4, 91-144.

Viejo, C. G., Fuentes, S., Torrico, D. D., Godbole, A. & Dunshea, F. R. (2019). Chemical characterization of aromas in beer and their effect on consumers liking. Food Chemistry, 293, 479-485. http://dx.doi.org/10.1016/j.foodchem.2019.04.114.

Zarnkow, M. (2014). Beer. Encyclopedia of Food Microbiology. Freising, (2n. ed.), 209- 215. https://doi.org/10.1016/B978-0-12-384730-0.00393-1.

Downloads

Publicado

04/01/2022

Como Citar

SANTOS, S. T. dos; PAZ, M. F. da; ALTEMIO, Ângela D. C. Avaliação de duas cepas de levedura nativas do brasil (Pichia kudriavzevii) em bioaromatização de cerveja artesanal. Research, Society and Development, [S. l.], v. 11, n. 1, p. e17311124783, 2022. DOI: 10.33448/rsd-v11i1.24783. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24783. Acesso em: 15 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas