Algoritmo multiobjetivo de polinização de flores aplicado à comunicação de redes veiculares 5G
DOI:
https://doi.org/10.33448/rsd-v11i1.25020Palavras-chave:
Redes veiculares; 5G; Computação evolutiva; Algoritmo de polinização de flores.Resumo
A tecnologia Cellular Vehicle-to-Everything (C-V2X), versão mais ampla das VANETs (Veicular Ad Hoc Networks), pretende interligar veículos e quaisquer outras infraestruturas tecnológicas de última geração. Nesse contexto a quinta geração de redes móveis (5G) baseada em ondas milimétricas (mmWave) é uma excelente alternativa para implantação de redes veiculares, principalmente por ser capaz de fornecer altas taxas de dados (Gbps) e latência ultrabaixa, requisitos do C-V2X. Por outro, lado sinais mmWave são altamente suscetíveis ao bloqueio, o que provoca baixa qualidade de serviço (QoS) nas VANETs, comprometendo as funcionalidades da rede e a segurança de motoristas e pedestres. Dessa forma este trabalho aplicou técnicas de computação evolutiva na simulação de uma rede veicular 5G, baseada em ondas milimétricas, explorando parâmetros de controle da camada de acesso ao meio (MAC) para otimizar a perda de pacotes, latência e throughput, com o objetivo de otimizar a comunicação interveicular. Para esse propósito foi utilizado O Algoritmo Multiobjetivo de Polinização de Flores (MOFPA). Os resultados obtidos mostram que a abordagem adotada pode atingir resultados próximos ao pareto ótimo de soluções não dominadas, com redução de 75% no tempo de exploração em comparação com o processo de busca exaustiva. Por fim, o desempenho da metaheurística adotava foi comparado com o non-dominated genetic classification algorithm (NSGA-II) e o multi-objective differential evolutionary algorithm (MODE).
Referências
Adibi, S., Jain, R., Parekh, S., & Tofighbakhsh, M. (Eds.). (2010). Quality of service architectures for wireless networks: Performance metrics and management. Hershey. Information Science Reference.
Andrade, H. G. V., Rios, M. F. R., Lima, R. N., Lacerda, H. F., & Silva-Filho, A. G. (2018). Multi-objective approaches to improve QoS in vehicular ad-hoc networks. Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications - DIVANet’18.
Atallah, R. F., Khabbaz, M. J., & Assi, C. M. (2015). Vehicular networking: A survey on spectrum access technologies and persisting challenges. Vehicular Communications, 2(3), 125–149. https://doi.org/10.1016/j.vehcom.2015.03.005
Attaran, M. (2021). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing, 1–17. https://doi.org/10.1007/s12652-020-02521-x
Chang, C.-Y., Yen, H.-C., & Deng, D.-J. (2016). V2V QoS Guaranteed Channel Access in IEEE 802.11p VANETs. IEEE Transactions on Dependable and Secure Computing, 13(1), 5–17. https://doi.org/10.1109/tdsc.2015.2399912
Chen, S., Hu, J., Shi, Y., Zhao, L., & Li, W. (2020). A vision of C-V2X: Technologies, field testing, and challenges with Chinese development. IEEE Internet of Things Journal, 7(5), 3872–3881. https://doi.org/10.1109/jiot.2020.2974823
Crawley, E., Nair, R., Rajagopalan, B., & Sandick, H. (1998). A framework for QoS-based routing in the internet. RFC Editor.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation : A Publication of the IEEE Neural Networks Council, 6(2), 182–197. https://doi.org/10.1109/4235.996017
Ge, X., Li, Z., & Li, S. (2017). 5G Software Defined Vehicular Networks. IEEE Communications Magazine, 55(7), 87–93. https://doi.org/10.1109/mcom.2017.1601144
Kayabekir, A. E., Bekdaş, G., Nigdeli, S. M., & Yang, X.-S. (2018). A comprehensive review of the flower pollination algorithm for solving engineering problems. In Nature-Inspired Algorithms and Applied Optimization (pp. 171–188). Springer International Publishing.
Lacerda, H. F., Andrade, H. G. V., & Silva-Filho, A. G. (2018). Improving QoS in Vehicular ad-hoc Networks using a multi-objective optimization algorithm. 2018 IEEE Symposium on Computers and Communications (ISCC).
Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., & Zorzi, M. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials, 20(3), 2237–2263. https://doi.org/10.1109/comst.2018.2828880
Rasheed, I., & Hu, F. (2021). Intelligent super-fast Vehicle-to-Everything 5G communications with predictive switching between mmWave and THz links. Vehicular Communications, 27(100303), 100303. https://doi.org/10.1016/j.vehcom.2020.100303
Rawat, D. B., Popescu, D. C., Yan, G., & Olariu, S. (2011). Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Transactions on Parallel and Distributed Systems: A Publication of the IEEE Computer Society, 22(9), 1528–1535. https://doi.org/10.1109/tpds.2011.41
Santos, T., & Xavier, S. (2018). A Convergence Indicator for Multi-Objective Optimisation Algorithms. TEMA. Tendencias Em Matematica Aplicada e Computacional, 19(3), 437. https://doi.org/10.5540/tema.2018.019.03.437
Sheikh, M. S., & Liang, J. (2019). A comprehensive survey on VANET security services in traffic management system. Wireless Communications and Mobile Computing, 2019, 1–23. https://doi.org/10.1155/2019/2423915
Sheng, Z., Pressas, A., Ocheri, V., Ali, F., Rudd, R., & Nekovee, M. (2018). Intelligent 5G vehicular networks: An integration of DSRC and mmWave communications. 2018 International Conference on Information and Communication Technology Convergence (ICTC).
Storck, C., & Duarte-Figueiredo, F. (2019). A 5G V2X ecosystem providing Internet of vehicles. Sensors (Basel, Switzerland), 19(3), 550. https://doi.org/10.3390/s19030550
Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine, 12(4), 73–87. https://doi.org/10.1109/mci.2017.2742868
Tripathi, S., Sabu, N. V., Gupta, A. K., & Dhillon, H. S. (2021). Millimeter-wave and terahertz spectrum for 6G wireless. In Computer Communications and Networks (pp. 83–121). Springer International Publishing.
Yang, X.-S., Karamanoglu, M., & He, X. (2013). Multi-objective flower algorithm for optimization. Procedia Computer Science, 18, 861–868. https://doi.org/10.1016/j.procs.2013.05.251
Zhang, M., Zhao, S., & Wang, X. (2009). Multi-objective evolutionary algorithm based on adaptive discrete Differential Evolution. 2009 IEEE Congress on Evolutionary Computation.
Zugno, T., Drago, M., Giordani, M., Polese, M., & Zorzi, M. (2020). Toward standardization of millimeter-wave vehicle-to-vehicle networks: Open challenges and performance evaluation. IEEE Communications Magazine, 58(9), 79–85. https://doi.org/10.1109/mcom.001.2000041
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Francisco Jonatas Siqueira Coelho; Eulogio Gutierrez Huampo; Henrique Figueirôa Lacerda; Arthur Doria Meneses de Freitas; Abel Guilhermino da Silva Filho
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.