Potencial aplicação agroalimentar do extrato de resíduos de seriguela (Spondias purpurea L.) e nanoZnO como agentes antimicrobianos, antipatogênicos e antivirulência

Autores

DOI:

https://doi.org/10.33448/rsd-v11i1.25033

Palavras-chave:

Bioativos de fonte vegetal; Nanopartículas; Atividade antimicrobiana; Antipatogenicidade; Antivirulência; Sistema de secreção tipo três; Quorum sensing.

Resumo

O impacto de microrganismos fitopatogênicos em diversas safras causa perdas significativas para indústria agroalimentícia, deterioração na cadeia alimentar e de armazenamento. Nanopartículas e extratos vegetais têm se destacado por suas propriedades antimicrobianas applicadas em embalagens, agricultura, sistemas de distribuição de medicamentos e outras abordagens médicas. Nos últimos anos, este grupo tem estudado a aplicação de nanopartículas de ZnO e resíduos agroindustriais em revestimentos/filmes comestíveis para alimentos. Este trabalho teve como objetivo avaliar características ativas do extrato de resíduos do processamento da seriguela e do nanoZnO quanto à atividade inibitória contra sistemas de patogenicidade e virulência bacteriana: TTSS (Sistema de Secreção Tipo Três) e QS (Quorum Sensing) para Pseudomonas savastanoi. Além da ação antibacteriana (área de inibição) contra espécies de Curtobacterium, Clavibacter, E. coli, Xanthomonas e Serratia, e da antifúngica contra Botrytis cinerea (redução do tamanho da colônia). Extrato a 60% inibiu a ativação do sistema QS e TTSS em 20,26% e 13,54%, respectivamente; enquanto nanoZnO a 3% reduziu 46,77% QS e aumentou 302,88% TTSS. Extrato sem diluição inibiu o crescimento de Clavibacter michiganensis pv michiganensis (Gram-positiva) e Xanthomonas phaseoli (Gram-negativa), zona inibitória 94,25 mm2 e 452,39 mm2 respectivamente. Esta última também inibida por nanoZnO 1 e 2% (138,23 mm2) e 3% (275,67 mm2). Extrato puro inibiu em 17,38% o crescimento da colônia fúngica e o nanoZnO (1 e 3%) em 33,08%. Por fim, os agentes ativos estudados mostraram-se promissores na prevenção de doenças fitopatogênicas consequentemente perdas econômicas, filmes/revestimentos de alimentos e o extrato como biopesticida reduzindo o impacto ambiental.

Referências

Akbar, A., & Anal, A. K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control, 38(1), 88–95. https://doi.org/10.1016/j.foodcont.2013.09.065

Alkan, D., & Yemenicioğlu, A. (2016). Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids, 55, 1–10. https://doi.org/10.1016/j.foodhyd.2015.10.025

Andrade, R. A. M. de S., Maciel, M. I. S., Santos, A. M. P., & Melo, E. de A. (2015). Optimization of the extraction process of polyphenols from cashew apple agro-industrial residues. Food Science and Technology, 35(2), 354–360. https://doi.org/10.1590/1678-457X.6585

Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.125566

Arulmozhi, P., Vijayakumar, S., Praseetha, P. K., & Jayanthi, S. (2019). Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L. Analytical Biochemistry, 572(December 2018), 33–44. https://doi.org/10.1016/j.ab.2019.02.006

Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria-"A Battle of the Titans". Frontiers in Microbiology, 9(JUL), 1–26. https://doi.org/10.3389/fmicb.2018.01441

Bataglion, G. A., Da Silva, F. M. A., Eberlin, M. N., & Koolen, H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chemistry, 180, 280–287. https://doi.org/10.1016/j.foodchem.2015.02.059

Biancalani, C., Cerboneschi, M., Tadini-Buoninsegni, F., Campo, M., Scardigli, A., Romani, A., & Tegli, S. (2016). Global analysis of type three secretion system and quorum sensing inhibition of pseudomonas savastanoi by polyphenols extracts from vegetable residues. PLoS ONE, 11(9), 1–21. https://doi.org/10.1371/journal.pone.0163357

Chart, H., Smith, H. R., La Ragione, R. M., & Woodward, M. J. (2000). An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. Journal of Applied Microbiology, 89(6), 1048–1058. https://doi.org/10.1046/j.1365-2672.2000.01211.x

Chen, Y., Yin, Y., & Pathology, P. (2007). e - X tra * Curtobacterium flaccumfaciens pv . beticola , A New Pathovar. Plant Disease, December 2006, 677–684.

Dahech, I., Farah, W., Trigui, M., Hssouna, A. Ben, Belghith, H., Belghith, K. S., & Abdallah, F. Ben. (2013). Antioxidant and antimicrobial activities of Lycium shawii fruits extract. International Journal of Biological Macromolecules, 60(September 2009), 328–333. https://doi.org/10.1016/j.ijbiomac.2013.05.020

Dannenberg, G. da S., Funck, G. D., Silva, W. P. da, & Fiorentini, Â. M. (2019). Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control, 95(April 2018), 115–120. https://doi.org/10.1016/j.foodcont.2018.07.034

de León, L., Siverio, F., López, M. M., & Rodríguez, A. (2008). Comparative efficiency of chemical compounds for in vitro and in vivo activity against Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker. Crop Protection, 27(9), 1277–1283. https://doi.org/10.1016/j.cropro.2008.04.004

Del Monte, D., De Martino, L., Marandino, A., Fratianni, F., Nazzaro, F., & De Feo, V. (2015). Phenolic content, antimicrobial and antioxidant activities of Hypericum perfoliatum L. Industrial Crops and Products, 74, 342–347. https://doi.org/10.1016/j.indcrop.2015.04.036

Devi, K. A., Pandey, P., & Sharma, G. D. (2016). Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23(4), 173–180. https://doi.org/10.1016/j.hjb.2016.12.006

Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 26(6), 913–924. https://doi.org/10.1007/s10534-013-9667-6

Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., Friedman, M., & McHugh, T. H. (2011). Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. Journal of Food Science, 76(2), M149–M155. https://doi.org/10.1111/j.1750-3841.2010.02012.x

Duffy, L. L., Osmond-McLeod, M. J., Judy, J., & King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92, 293–300. https://doi.org/10.1016/j.foodcont.2018.05.008

Dutra, R. L. T., Dantas, A. M., Marques, D. de A., Batista, J. D. F., Meireles, B. R. L. de A., de Magalhães Cordeiro, Â. M. T., Magnani, M., & Borges, G. da S. C. (2017). Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International, 100(May), 650–657. https://doi.org/10.1016/j.foodres.2017.07.047

Engels, C., Gräter, D., Esquivel, P., Jiménez, V. M., Gänzle, M. G., & Schieber, A. (2012). Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Research International, 46(2), 557–562. https://doi.org/10.1016/j.foodres.2011.04.003

Esmailzadeh, H., Sangpour, P., Shahraz, F., Hejazi, J., & Khaksar, R. (2016). Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Materials Science and Engineering C, 58, 1058–1063. https://doi.org/10.1016/j.msec.2015.09.078

García-Lara, B., Saucedo-Mora, M. A., Roldán-Sánchez, J. A., Pérez-Eretza, B., Ramasamy, M., Lee, J., Coria-Jimenez, R., Tapia, M., Varela-Guerrero, V., & García-Contreras, R. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61(3), 299–305. https://doi.org/10.1111/lam.12456

Gutiérrez-Barranquero, J. A., Reen, F. J., McCarthy, R. R., & O’Gara, F. (2015). Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Applied Microbiology and Biotechnology, 99(7), 3303–3316. https://doi.org/10.1007/s00253-015-6436-1

Gutiérrez-Pacheco, M. M., Bernal-Mercado, A. T., Vázquez-Armenta, F. J., Mart ínez-Tellez, M. A., González-Aguilar, G. A., Lizardi-Mendoza, J., Madera-Santana, T. J., Nazzaro, F., & Ayala-Zavala, J. F. (2019). Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiological and Molecular Plant Pathology, 106(February), 281–291. https://doi.org/10.1016/j.pmpp.2019.04.002

Haas, I. C. da S., Toaldo, I. M., Burin, V. M., & Bordignon-Luiz, M. T. (2018). Extraction optimization for polyphenolic profiling and bioactive enrichment of extractives of non-pomace residue from grape processing. Industrial Crops and Products, 112(September 2017), 593–601. https://doi.org/10.1016/j.indcrop.2017.12.058

Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003

Hiery, E., Adam, S., Reid, S., Hofmann, J., Sonnewald, S., & Burkovski, A. (2013). Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium. Journal of Biotechnology, 168(4), 348–354. https://doi.org/10.1016/j.jbiotec.2013.09.006

Huang, H. C., Erickson, R. S., & Hsieh, T. F. (2007). Control of bacterial wilt of bean (Curtobacterium flaccumfaciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Protection, 26(7), 1055–1061. https://doi.org/10.1016/j.cropro.2006.09.018

Joshi, J. R., Burdman, S., Lipsky, A., Yariv, S., & Yedidia, I. (2016). Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P.carotovorum ssp. brasiliense via quorum sensing regulation. Molecular Plant Pathology, 17(4), 487–500. https://doi.org/10.1111/mpp.12295

Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106(1), 190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

Kannan, K., Nivas, D., Kannan, V., & Bastas, K. (2015). Agro-Traditional Practices of Plant Pathogens Control. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria (Issue November 2017). https://doi.org/10.1201/b18892-6

Khaldi, R. El, Daami-Remadi, M., Hamada, W., Somai, L., & Cherif, M. (2015). The Potential of Serratia marcescens: An Indigenous Strain Isolated from Date Palm Compost as Biocontrol Agent of Rhizoctonia solani on Potato. Journal of Plant Pathology & Microbiology, s3. https://doi.org/10.4172/2157-7471.1000s3-006

Khokhani, D., Zhang, C., Li, Y., Wang, Q., Zeng, Q., Yamazaki, A., Hutchins, W., Zhou, S. S., Chen, X., & Yang, C. H. (2013). Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, erwinia amylovora. Applied and Environmental Microbiology, 79(18), 5424–5436. https://doi.org/10.1128/AEM.00845-13

Kostylev, M., Otwell, A. E., Richardson, R. E., & Suzuki, Y. (2015). Cloning should be simple: Escherichia coli DH5á-mediated assembly of multiple DNA fragments with short end homologies. PLoS ONE, 10(9), 1–7. https://doi.org/10.1371/journal.pone.0137466

Ma, D., Ji, D., Zhang, Z., Li, B., Qin, G., Xu, Y., Chen, T., & Tian, S. (2019). Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 150(August 2018), 158–165. https://doi.org/10.1016/j.postharvbio.2019.01.005

Martins, P. M. M., Merfa, M. V., Takita, M. A., & De Souza, A. A. (2018). Persistence in phytopathogenic bacteria: Do we know enough? Frontiers in Microbiology, 9(MAY), 1–14. https://doi.org/10.3389/fmicb.2018.01099

Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F., & Karim, A. A. (2013). Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydrate Polymers, 96(1), 233–239. https://doi.org/10.1016/j.carbpol.2013.03.055

Nandhini, M., Rajini, S. B., Udayashankar, A. C., Niranjana, S. R., Lund, O. S., Shetty, H. S., & Prakash, H. S. (2019). Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protection, 121(March), 103–112. https://doi.org/10.1016/j.cropro.2019.03.015

Nayantara, & Kaur, P. (2018). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review. Biotechnology Research and Innovation, 2(1), 63–73. https://doi.org/10.1016/j.biori.2018.09.003

Ombiro, G. S. ombe, Sawai, T., Noutoshi, Y., Nishina, Y., Matsui, H., Yamamoto, M., Toyoda, K., & Ichinose, Y. (2018). Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis. Microbiological Research, 215(April), 29–35. https://doi.org/10.1016/j.micres.2018.06.005

Osdaghi, E., Taghavi, S. M., Fazliarab, A., Elahifard, E., & Lamichhane, J. R. (2015). Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: An emerging bacterial pathogen in Iran. Crop Protection, 78, 185–192. https://doi.org/10.1016/j.cropro.2015.09.015

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). ). Metodologia da pesquisa científica. [free e-book]. 1. ed. – Santa Maria, RS : Ed. UAB / NTE / UFSM. ISBN 978-85-8341-204-5

Pina-Pérez, M. C., & Ferrús Pérez, M. A. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends in Food Science and Technology, 72(November 2017), 114–124. https://doi.org/10.1016/j.tifs.2017.12.007

Portugal Zegarra, M. del C. C., Santos, A. M. P., Silva, A. M. A. D., & Melo, E. de A. (2018). Chitosan films incorporated with antioxidant extract of acerola agroindustrial residue applied in chicken thigh. Journal of Food Processing and Preservation, 42(4), 1–12. https://doi.org/10.1111/jfpp.13578

Poveda, J. M., Loarce, L., Alarcón, M., Díaz-Maroto, M. C., & Alañón, M. E. (2018). Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Industrial Crops and Products, 112(October 2017), 617–625. https://doi.org/10.1016/j.indcrop.2017.12.063

Queiroz, P. S., Barboza, N. R., Cordeiro, M. M., Leão, V. A., & Guerra-Sá, R. (2018). Rich growth medium promotes an increased on Mn(II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater. Biochemical Engineering Journal, 140(September), 148–156. https://doi.org/10.1016/j.bej.2018.09.018

Rahman, H. S., Othman, H. H., Hammadi, N. I., Yeap, S. K., Amin, K. M., Samad, N. A., & Alitheen, N. B. (2020). Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. In International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S227805

Santos, Andrelina M.P., & Santos, E. J. P. (2012). Optimization of nanostructured ZnO-particle fabrication route with different alcohols and varying sodium hydroxide concentration. ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, June, 24–28.

Santos, Andrelina Maria Pinheiro, Demetrio, A. A., Santos, M. M. dos, & Melo, E. de A. (2019). CHITOSAN/NANOZNO EDIBLE COATINGS: PREPARATION AND ACTIVE FOOD PACKING APPLICATION. In A Produção do Conhecimento nas Ciências da Saúde 2. https://doi.org/10.22533/at.ed.99919300420

Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519–537. https://doi.org/10.1007/s12571-012-0200-5

Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271. https://doi.org/10.1016/j.foodhyd.2014.12.001

Sharma, A., Gautam, S., & Wadhawan, S. (2014). Xanthomonas. Encyclopedia of Food Microbiology: Second Edition, 3, 811–817. https://doi.org/10.1016/B978-0-12-384730-0.00359-1

Silva, V., Igrejas, G., Falco, V., Santos, T. P., Torres, C., Oliveira, A. M. P., Pereira, J. E., Amaral, J. S., & Poeta, P. (2018). Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control, 92(March), 516–522. https://doi.org/10.1016/j.foodcont.2018.05.031

Silva, R. V., Costa, S. C. C., Branco, C. R. C., & Branco, A. (2016). In vitro photoprotective activity of the Spondias purpurea L. peel crude extract and its incorporation in a pharmaceutical formulation. Industrial Crops and Products, 83, 509–514. https://doi.org/10.1016/j.indcrop.2015.12.077

Steiner, A. D., Vargas, A., Fronza, N., Brandelli, A., & dos Santos, J. H. Z. (2017). Antimicrobial activity of some natural extracts encapsulated within silica matrices. Colloids and Surfaces B: Biointerfaces, 160, 177–183. https://doi.org/10.1016/j.colsurfb.2017.09.028

Thakur, H., Sharma, A., Sharma, P., & Rana, R. S. (2021). An insight into the problem of bacterial wilt in Capsicum spp. With special reference to India. Crop Protection, 140(September 2020), 105420. https://doi.org/10.1016/j.cropro.2020.105420

Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001

Vaquero, M. J. R., Alberto, M. R., & de Nadra, M. C. M. (2007). Antibacterial effect of phenolic compounds from different wines. Food Control, 18(2), 93–101. https://doi.org/10.1016/j.foodcont.2005.08.010

Wang, C., Liu, X., Wang, J., Zhou, J., Cui, Z., & Zhang, L. H. (2016). Design and characterization of a polyamine derivative inhibiting the expression of type III secretion system in Pseudomonas aeruginosa. Scientific Reports, 6(July 2015), 1–13. https://doi.org/10.1038/srep30949

Wang, X., Hou, X., Liang, S., Lu, Z., Hou, Z., Zhao, X., Sun, F., & Zhang, H. (2018). Biodegradation of fungicide Tebuconazole by Serratia marcescens strain B1 and its application in bioremediation of contaminated soil. International Biodeterioration and Biodegradation, 127(September 2017), 185–191. https://doi.org/10.1016/j.ibiod.2017.12.001

Yang, J., Wang, W., Yang, P., Tao, B., Yang, Z., Zhang, L. H., & Dong, J. G. (2015). Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 “pesta” granular formulation. Journal of Integrative Agriculture, 14(7), 1348–1355. https://doi.org/10.1016/S2095-3119(14)60967-9

Yang, S., Peng, Q., San Francisco, M., Wang, Y., Zeng, Q., & Yang, C. H. (2008). Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS ONE, 3(8). https://doi.org/10.1371/journal.pone.0002973

Yin, H., Deng, Y., Wang, H., Liu, W., Zhuang, X., & Chu, W. (2015). Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa. Scientific Reports, 5(November). https://doi.org/10.1038/srep16158

Zhang, Y., Sass, A., Van Acker, H., Wille, J., Verhasselt, B., Van Nieuwerburgh, F., Kaever, V., Crabbé, A., & Coenye, T. (2018). Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Frontiers in Microbiology, 9(AUG), 1–10. https://doi.org/10.3389/fmicb.2018.01952

Downloads

Publicado

09/01/2022

Como Citar

CARNAVAL, L. de S. C.; CERBONESCHI, M.; TEGLI, S.; YOSHIDA, C. M. P.; MELO, E. de A. .; SANTOS, A. M. P. Potencial aplicação agroalimentar do extrato de resíduos de seriguela (Spondias purpurea L.) e nanoZnO como agentes antimicrobianos, antipatogênicos e antivirulência. Research, Society and Development, [S. l.], v. 11, n. 1, p. e37211125033, 2022. DOI: 10.33448/rsd-v11i1.25033. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25033. Acesso em: 5 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas