Adsorção do corante amarelo ácido 17 em carvão ativado preparado do cacho do açaí Euterpe oleracea: estudos cinéticos e termodinâmico

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25556

Palavras-chave:

Adsorção; Carvão ativado; Amarelo ácido 17.

Resumo

A poluição do meio ambiente tem sido ponto de discussão na comunidade internacional e objeto de investigação por grupos de pesquisa, que têm buscado o desenvolvimento de métodos de remediação. No presente estudo, o cacho de açaí (Euterpe oleracea) foi utilizado como precursor de carvão ativado de baixo custo para a remoção do corante amarelo ácido 17 (AY 17) em solução aquosa. A síntese foi realizada nas temperaturas de 500, 600 e 700 ° C, por 2,0 h em forno mufla. O mecanismo cinético e termodinâmico do processo de adsorção do corante AY 17, e os efeitos do pH, tempo de contato e concentração inicial foram investigados para o carvão ativado com maior capacidade adsortiva. O carvão ativado carbonizado a 700 °C teve a maior capacidade adsortiva, cerca de 99,9% de remoção do AY. A capacidade de adsorção de AY 17 é ligeiramente dependente do pH, com um valor máximo em pH 2,0. Os dados cinéticos mostram que o tempo de equilíbrio é de 200 min, e a capacidade de adsorção do carvão ativado foi de 99,9% a 50 mg L‒ 1 e 67,0% a 150 mg L‒1 de adsorbato, sugerindo alta capacidade de adsorção do material, mesmo na presença de alta concentração de corante. O processo de adsorção de AY 17 é descrito pelo modelo cinético de pseudo-segunda ordem, e as isotermas experimentais de adsorção são ajustadas ao modelo de Freundlich, indicando que a adsorção de AY 17 no carvão ativado ocorre com a formação de multicamadas. O presente estudo mostra que esse material de baixo custo possui grande potencial para remediação de efluentes têxteis.

Referências

Abdulhameed, A. S., Mohammad, A. K. T., & Jawad, A. H. (2019). Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J. Clean. Prod., 232, 43–56. https://doi.org/10.1016/j.jclepro.2019.05.291.

Achour, Y., Bahsis, L., Ablouh, E. H., Yazid, H., Laamari, M. R., & Haddad, M. El (2021). Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark Activated-carbon using Central composite design and DFT studies. Surfaces and Interfaces, 23, 100977. https://doi.org/10.1016/j.surfin.2021.100977.

Ahmad, M. A., Ahmad Puad, N. A., & Bello, O. S. (2014). Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind., 6, 18–35. https://doi.org/10.1016/j.wri.2014.06.002.

Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.

Alam, M. M., Hossain, M. A., Hossain, M. D., Johir, M. A. H., Hossen, J., Rahman, M. S., Zhou, J. L., Hasan, A. T. M. K., Karmakar, A. K., & Ahmed, M. B. (2020). The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes, 8. https://doi.org/10.3390/pr8020203.

Alkathiri, D. S. S., Sabri, M. A., Ibrahim, T. H., ElSayed, Y. A., & Jumean, F. (2020). Development of activated carbon fibers for removal of organic contaminants. Int. J. Environ. Sci. Technol., 17, 4841–4852. https://doi.org/10.1007/s13762-020-02808-8.

Ani, J. U., Akpomie, K. G., Okoro, U. C., Aneke, L. E., Onukwuli, O. D., & Ujam, O. T. (2020). Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl. Water Sci., 10, 1–11. https://doi.org/10.1007/s13201-020-1149-8.

Ashraf, M. A., Hussain, M., Mahmood, K., Wajid, A., Yusof, M., Alias, Y., & Yusoff, I. (2013). Removal of acid yellow-17 dye from aqueous solution using eco-friendly biosorbent. Desalin. Water Treat., 51, 4530–4545. https://doi.org/10.1080/19443994.2012.747187.

Benkhaya, S., M’ rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun., 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891.

Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., & El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5. https://doi.org/10.1016/j.heliyon.2019.e02711.

Bhomick, P. C., Supong, A., Baruah, M., Pongener, C., & Sinha, D. (2018). Pine Cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies. Sustain. Chem. Pharm., 10, 41–49. https://doi.org/10.1016/j.scp.2018.09.001.

Bouhadjra, K., Lemlikchi, W., Ferhati, A., & Mignard, S. (2021). Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Sci. Rep., 11, 1–10. https://doi.org/10.1038/s41598-020-79069-5.

Bulca, Ö., Palas, B., Atalay, S., & Ersöz, G. (2021). Performance investigation of the hybrid methods of adsorption or catalytic wet air oxidation subsequent to electrocoagulation in treatment of real textile wastewater and kinetic modelling. J. Water Process Eng., 40. https://doi.org/10.1016/j.jwpe.2020.101821.

Castro, A. S., Franco, C. R., & Cidade, M. J. A. (2018). Adsorption of dyes indosol blue, Indosol orange and drimarene red in aqueous solution by white clay. Rev. Virtual Quim., 10, 1502–1515. https://doi.org/10.21577/1984-6835.20180102.

Chen, F., Zhu, J., Yang, Y., & Wang, L. (2020). Assessing environmental impact of textile production with water alkalization footprint. Sci. Total Environ., 719, 137522. https://doi.org/10.1016/j.scitotenv.2020.137522.

Delle Site, A. (2001). Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. Ref. Data, 30, 187–439. https://doi.org/10.1063/1.1347984.

Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater., 162, 616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042.

Felista, M. M., Wanyonyi, W. C., & Ongera, G. (2020). Adsorption of anionic dye (Reactive black 5) using macadamia seed Husks: Kinetics and equilibrium studies. Sci. African, 7, e00283. https://doi.org/10.1016/j.sciaf.2020.e00283.

Foo, K. Y., & Hameed, B. H. (2012). Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste. Bioresour. Technol., 116, 522–525. https://doi.org/10.1016/j.biortech.2012.03.123.

Guaratini, C. C. I., & Zanoni, M. V. B. (2000). Corantes têxteis. Quim. Nova, 23, 71–78.

Habibi, A., Belaroui, L.S., Bengueddach, A., López Galindo, A., Sainz Díaz, C. I., & Peña, A. (2018). Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin. Microporous Mesoporous Mater., 268, 293–302. https://doi.org/10.1016/j.micromeso.2018.04.020.

Hamza, W., Dammak, N., Hadjltaief, H. B., Eloussaief, M., & Benzina, M. (2018). Sono-assisted adsorption of Cristal Violet dye onto Tunisian Smectite Clay: Characterization, kinetics and adsorption isotherms. Ecotoxicol. Environ. Saf., 163, 365–371. https://doi.org/10.1016/j.ecoenv.2018.07.021.

Haseeb, M., Kot, S., Hussain, H. I., Mihardjo, L. W. W., & Saluga, P. (2020). Modelling the non-linear energy intensity effect based on a quantile-on-quantile approach: The case of textiles manufacturing in asian countries. Energies, 13. https://doi.org/10.3390/en13092229.

Hassaan, M. A., Nemr, A. El, & Madkour, F. F. (2016). Application of Ozonation and UV assisted Ozonation for Decolorization of Direct Yellow 50 in Sea water. Pharm. Chem. J., 3, 131–138.

Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett., 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0.

Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. J. Clean. Prod., 272, 122636. https://doi.org/10.1016/j.jclepro.2020.122636.

Ignachewski, F., Fujiwara, T., Química, D. De, Centro-oeste, U.E., Camargo, R., Sá, V. De, Pr, G., Física, D. De, Centro-oeste, U.E., Camargo, R., Sá, V. De, Pr, G., Carneiro, L.M., & Tauchert, E. (2010). Degradação de corantes reativos por processo foto-fenton envolvendo o uso de peneira molecular 4a modificada com fe3+. Quim. Nova, 33, 1640–1645.

Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind., 15, 14–27. https://doi.org/10.1016/j.wri.2016.06.001.

Langmuir, I. (1918). Adsorption of Gases on Glass, Mica and Platinum. the Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc., 40, 1361–1403.

Jain, S. N., Tamboli, S. R., Sutar, D. S., Jadhav, S. R., Marathe, J. V., Shaikh, A. A., & Prajapati, A. A. (2020). Batch and continuous studies for adsorption of anionic dye onto waste tea residue: Kinetic, equilibrium, breakthrough and reusability studies. J. Clean. Prod., 252, 119778. https://doi.org/10.1016/j.jclepro.2019.119778.

Jedynak, K., Wideł, D., & Rędzia, N. (2019). Removal of rhodamine b (A basic dye) and acid yellow 17 (an acidic dye) from aqueous solutions by ordered mesoporous carbon and commercial activated carbon. Colloids and Interfaces, 3. https://doi.org/10.3390/colloids3010030.

Kannaujiya, M. C., Prajapati, A. K., Mandal, T., Das, A. K., & Mondal, M. K. (2021). Extensive analyses of mass transfer, kinetics, and toxicity for hazardous acid yellow 17 dye removal using activated carbon prepared from waste biomass of Solanum melongena. Biomass Convers. Biorefinery., https://doi.org/10.1007/s13399-020-01160-8.

Karthik, V., Saravanan, K., Patra, C., Ushadevi, B., Vairam, S., & Selvaraju, N. (2019). Biosorption of Acid Yellow 12 from simulated wastewater by non-viable T. harzianum: kinetics, isotherm and thermodynamic studies. Int. J. Environ. Sci. Technol., 16, 6895–6906. https://doi.org/10.1007/s13762-018-2073-4.

Kataria, N., Garg, V. K., Jain, M., & Kadirvelu, K. (2016). Preparation, characterization and potential use of flower shaped Zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Adv. Powder Technol., 27, 1180–1188. https://doi.org/10.1016/j.apt.2016.04.001.

Khatri, J., Nidheesh, P. V., Anantha Singh, T. S., & Suresh Kumar, M. (2018). Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem. Eng. J., 348, 67–73. https://doi.org/10.1016/j.cej.2018.04.074.

Khattab, T. A., Abdelrahman, M. S., & Rehan, M. (2020). Textile dyeing industry: environmental impacts and remediation. Environ. Sci. Pollut. Res., 27, 3803–3818. https://doi.org/10.1007/s11356-019-07137-z.

Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng., 9, 105012. https://doi.org/10.1016/j.jece.2020.105012.

Lang, W., Sirisansaneeyakul, S., Ngiwsara, L., Mendes, S., Martins, L.O., Okuyama, M., & Kimura, A. (2013). Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: Toward dye decolorization using a packed-bed metal affinity reactor. Bioresour. Technol., 150, 298–306. https://doi.org/10.1016/j.biortech.2013.09.124.

Li, J., Wang, S., Peng, J., Lin, G., Hu, T., & Zhang, L. (2018). Selective Adsorption of Anionic Dye from Solutions by Modified Activated Carbon. Arab. J. Sci. Eng., 43, 5809–5817. https://doi.org/10.1007/s13369-017-3006-0.

Machrouhi, A., Farnane, M., Elhalil, A., Elmoubarki, R., Abdennouri, M., Barka, N., Qourzal, S., & Tounsadi, H. (2018). Effectiveness of beetroot seeds and H3PO4 activated beetroot seeds for the removal of dyes from aqueous solutions. J. Water Reuse Desalin., 8, 522–531. https://doi.org/10.2166/wrd.2017.034.

Mahmoud, M. E., Abdelfattah, A. M., Tharwat, R. M., & Nabil, G. M. (2020). Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: Optimization, kinetics and thermodynamic study. J. Mol. Liq., 318, 114297. https://doi.org/10.1016/j.molliq.2020.114297.

Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dye. Pigment., 73, 269–278. https://doi.org/10.1016/j.dyepig.2005.12.006.

Munagapati, V. S., Wen, H. Y., Vijaya, Y., Wen, J. C., Wen, J. H., Tian, Z., Reddy, G. M., & Raul Garcia, J. (2021). Removal of anionic (Acid Yellow 17 and Amaranth) dyes using aminated avocado (Persea americana) seed powder: adsorption/desorption, kinetics, isotherms, thermodynamics, and recycling studies. Int. J. Phytoremediation, 23, 911–923. https://doi.org/10.1080/15226514.2020.1866491.

Nambela, L., Haule, L.V., & Mgani, Q. (2020). A review on source, chemistry, green synthesis and application of textile colorants. J. Clean. Prod., 246, 119036. https://doi.org/10.1016/j.jclepro.2019.119036.

Njoku, V. O., Foo, K. Y., Asif, M., & Hameed, B. H. (2014). Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem. Eng. J., 250, 198–204. https://doi.org/10.1016/j.cej.2014.03.115.

Obaid, M. K., Abdullah, L. C., & Idan, I. J. (2016). Removal of Reactive Orange 16 Dye from Aqueous Solution by Using Modified Kenaf Core Fiber. J. Chem., 2016, 1–8. https://doi.org/10.1155/2016/4262578.

Panwar, N. L., & Pawar, A. (2020). Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Convers. Biorefinery., https://doi.org/10.1007/s13399-020-00870-3.

Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water. Air. Soil Pollut., 232. https://doi.org/10.1007/s11270-020-04968-2.

Parveen, K., & Rafique, U. (2018). Development of cobalt-doped alumina hybrids for adsorption of textile effluents. Adsorpt. Sci. Technol., 36, 182–197. https://doi.org/10.1177/0263617416687563.

Patil, C., Ratnamala, G. M., Channamallayya, S. T., & Belagavi, K. (2015). Adsorption Studies for Removal of Acid yellow 17 using Activated Rice Husk. Inter. Res. J. of Eng. and Techn., 769–774.

Piccin, J. S., Dotto, G. L., & Pinto, L. A. A. (2011). Adsorption isotherms and thermochemical data of FDandC RED N° 40 Binding by chitosan. Brazilian J. Chem. Eng., 28, 295–304. https://doi.org/10.1590/S0104-66322011000200014.

Ghaly A. E, Ananthashankar R, Alhattab M, & Ramakrishnan V. V (2014). Production, Characterization and Treatment of Textile Effluents: A Critical Review. J. Chem. Eng. Process Technol., 05. https://doi.org/10.4172/2157-7048.1000182.

Raman, C. D., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: A review. J. Environ. Manage., 177, 341–355. https://doi.org/10.1016/j.jenvman.2016.04.034.

Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., Taweekun, J., & Azad, A. K. (2020). Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J. Basic Appl. Sci., 27, 208–238. https://doi.org/10.1080/25765299.2020.1766799.

Roy, U., Sengupta, S., Das, P., Bhowal, A., & Datta, S. (2018). Integral approach of sorption coupled with biodegradation for treatment of azo dye using Pseudomonas sp.: batch, toxicity, and artificial neural network. 3 Biotech, 8, 1–11. https://doi.org/10.1007/s13205-018-1215-1.

Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E. (2015). Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng., 32, 787–799. https://doi.org/10.1007/s11814-015-0053-7.

Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. https://doi.org/10.1016/j.desal.2011.07.019.

Sarkar, S., Banerjee, A., Halder, U., Biswas, R., & Bandopadhyay, R. (2017). Degradation of Synthetic Azo Dyes of Textile Industry: a Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng., 2, 121–131. https://doi.org/10.1007/s41101-017-0031-5.

Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Ng, H. Y., & Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12, 70–87. https://doi.org/10.1080/21655979.2020.1863034.

Shoaib, A. G. M., El-Sikaily, A., El Nemr, A., & Mohamed, A. E. D. A., Hassan, A. A. (2020). Preparation and characterization of highly surface area activated carbons followed type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation. Biomass Convers. Biorefinery., https://doi.org/10.1007/s13399-020-00760-8.

Sing, K. S. W. (1982). Reporting physisorption data for gas / solid systems with Special Reference to the Determination of S. Pure Appl. Chem., 54, 2201–2218.

Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., & Mishra, I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids Surfaces A Physicochem. Eng. Asp., 272, 89–104. https://doi.org/10.1016/j.colsurfa.2005.07.016.

Ugwu, E. I., & Agunwamba, J. C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environ. Monit. Assess., 192. https://doi.org/10.1007/s10661-020-8162-0.

Vacchi, F. I., Albuquerque, A. F., Vendemiatti, J. A., Morales, D. A., Ormond, A. B., Freeman, H. S., Zocolo, G. J., Zanoni, M. V. B., & Umbuzeiro, G. (2013). Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. Sci. Total Environ., 442, 302–309. https://doi.org/10.1016/j.scitotenv.2012.10.019.

Veit, M. T., Bedin, S., Gonçalves, G. C., Palácio, S. M., & Fagundes-Klen, M. R. (2014). Utilização do resíduo de erva-mate como material adsorvente do corante azul de metileno. Eclet. Quim., 39, 227–243.

Verma, K., Saha, G., Kundu, L. M., & Dubey, V. K. (2019). Biochemical characterization of a stable azoreductase enzyme from Chromobacterium violaceum: Application in industrial effluent dye degradation. Int. J. Biol. Macromol., 121, 1011–1018. https://doi.org/10.1016/j.ijbiomac.2018.10.133.

Yusop, M. F. M., Ahmad, M. A., Rosli, N. A., Gonawan, F. N., & Abdullah, S. J. (2021). Scavenging malachite green dye from aqueous solution using durian peel based activated carbon. Malaysian J. Fundam. Appl. Sci., 17, 95–103. https://doi.org/10.11113/MJFAS.V17N1.2173.

Zoroufchi Benis, K., Motalebi Damuchali, A., McPhedran, K. N., & Soltan, J. (2020). Treatment of aqueous arsenic – A review of biosorbent preparation methods. J. Environ. Manage., 273, 111126. https://doi.org/10.1016/j.jenvman.2020.111126.

Downloads

Publicado

22/01/2022

Como Citar

LOPES, D. de O. .; SANTOS, L. O. .; NASCIMENTO, E. D.; SOUZA, A. D. V. de; CARVALHO, F. A. de O. Adsorção do corante amarelo ácido 17 em carvão ativado preparado do cacho do açaí Euterpe oleracea: estudos cinéticos e termodinâmico . Research, Society and Development, [S. l.], v. 11, n. 2, p. e16511225556, 2022. DOI: 10.33448/rsd-v11i2.25556. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25556. Acesso em: 26 nov. 2024.

Edição

Seção

Ciências Exatas e da Terra