Características agronômicas de tremoço branco e teores de fósforo após a aplicação de pó de rocha de basalto associado com plantas de cobertura e microrganismos
DOI:
https://doi.org/10.33448/rsd-v11i3.26366Palavras-chave:
Rochagem; Braquiária; Guandu; Biodisponibilidade de fósforo.Resumo
O pó de rocha pode ser uma alternativa para melhoria das propriedades químicas do solo. Dessa forma, o objetivo do presente estudo foi avaliar os componentes de produção, os teores de fósforo (P) na planta de tremoço branco e no solo após a aplicação de pó de rocha de basalto associado com plantas de cobertura e microrganismos. O experimento foi conduzido na Estação Experimental da Universidade Estadual do Oeste do Paraná – UNIOESTE. O delineamento experimental utilizado foi em blocos inteiramente ao acaso com 7 tratamentos e 4 repetições. Os tratamentos foram: T1-Pó de rocha+adubação verde com braquiária; T2-Pó de rocha+adubação verde com guandu; T3-Pó de rocha+braquiária+Azospirillum+Trichoderma+Pycnoporus; T4-Pó de rocha+Azospirillum; T5-Pó de rocha+ Trichoderma; T6- Pó de rocha+fungo Pycnoporus; T7- Pó de rocha. Avaliou-se as características agronômicas do tremoço branco cultivado em sucessão aos tratamentos e os teores de fósforo na planta e no solo. A aplicação de pó de rocha de basalto junto com braquiária e guandu favoreceram o desenvolvimento do tremoço branco cultivado em sucessão e aumentou a disponibilidade de fósforo no solo. Dentre os microrganismos estudados o fungo do gênero Trichoderma aplicado junto com o pó de rocha de basalto favoreceu a produção de massa seca da parte aérea do tremoço branco e foi capaz de aumentar a disponibilidade de fósforo disponível no solo. O pó de rocha aplicado com Azospirillum também aumentou a disponibilidade de P no solo. Enquanto, o pó de rocha aplicado com Pycnoporus não promoveu diferença estatística para nenhuma das características avaliadas.
Referências
Alfenas, A.C., Zauza, E. Â. V., Mafia, R.G. & Alfenas, R.F. (2016). Produção, determinação e calibração da concentração de inóculo em suspensão. In: Alfenas, A.C. & Mafia, R.G. Métodos em fitopatologia. Viçosa: Editora UFV, 107-121.
Alvares, C.A., Stape, J. L., Sentelhas, P.C., Golçalves, J. L. M. & Sparovek, G. (2014). Köppen’s climate classification map for Brasil. Meteorologische Zeitschrift, 22(6), 711-728.
Baliah, N.T., Pandiarajan, G. & Kumar, B. (2016). Isolation, identification and characterization of phosphate solubilizing bacteria from different crop soils of Srivilliputtur Taluk, Virudhunagar District, Tamil Nadu. Tropical Ecology, 57(3), 465-474.
Batista, N.T.F., Ragagnin, V.A., Hack, E., Görgen, A.L. & Martins, E.S. (2017). Atributos químicos de um Latossolo Vermelho-Amarelo sob cultivo de soja e sorgo submetido ao uso de basalto moído. In: Congresso Brasileiro de Rochagem, 03, Pelotas, 2017. Anais. Pelotas: Embrapa Clima Temperado, 241-247.
Batista, F.C. et al. (2018). Potencial de microrganismos rizosféricos e endofíticos de milho em solubilizar o fosfato de ferro e produzir sideróforos. Sete Lagoas: Embrapa Milho e Sorgo (Boletim de Pesquisa e Desenvolvimento), 166 p.
Brito, R.S.D., Batista, J.F., Moreira, J.G. do V., Moraes, K.N.O., & Silva, S.O. (2019). Rochagem na agricultuta: importância e vantagens para adubação suplementar. South American Journal of Basic Education, Technical and Technological, 6(1).
Cardoso, E.J.B.N.& Nogueira, M.A. (2007). A Rizosfera e seus Efeitos na Comunidade microbiana e na Nutrição de Plantas In: Microbiota do Solo e Qualidade Ambiental. Campinas: Instituto Agronômico, 312 p.
Carvalho, A.M.X. de. (2012) Rochagem e suas interações no ambiente solo: contribuições para aplicação em agroecossistemas em manejo agroecológico. Tese (Doutorado em Solos e Nutrição de Plantas) – Universidade Federal de Viçosa, Viçosa, 116 p.
Carvalho, A.M.X. (2013). Rochagem: um novo desafio para o manejo sustentável da fertilidade do solo. In: Silva, J.C. da., SILVA, A.A.S., ASSIS, R.T. Sustentabilidade e inovações no campo. Uberlândia: Composer, 117-132.
Cola, G.P.A. & Simão, J.B.P. (2012). Rochagem como forma alternativa de suplementação de potássio na agricultura agroecológica. Revista Verde, 7(1), 01-08.
Delarmelinda, E.A., Sampaio, F.A.R., Dias, J.R.M, Tavella, L.B. & Silva, J.S.da (2010). Adubação verde e alterações nas características químicas de um Cambissolo na região de Ji-Paraná-RO. Acta Amazonica, 40(3), 625-627. Disponível em: https://doi.org/10.1590/S0044-59672010000300024.
Ferreira, D.F. (2011) Sisvar: um guia dos seus procedimentos de comparações múltiplas Bootstrap. Ciência e Agrotecnologia, 38(2).
George, T.S., Turner, B.L., Gregory, P.J., Cade-Menun, B.J. & Richardson, A.E. (2006). Depletion of organic phosphorus from Oxisols in relation to phosphatase activities in the rhizosphere. European Journal of Soil Science, 57, 47-57. https://doi.org/10.1111/j.1365-2389.2006.00767.x.
Gonçalves, J.L.M., Santarelli, E.G., Moraes Netto, S.P., Manara, M. P. & Stape, J.L. (2000). Produção de mudas de espécies nativas: substrato, nutrição, sombreamento e fertilização. Nutrição e fertilização florestal, 310-350.
Gonçalves, R.C., Alfenas, A.C. & Mafia, R.G. (2016). Armazenamento de microrganismos em cultura com ênfase em fungos fitopatogênicos. In: Alfenas, A.C. & Mafia, R.G. Métodos em fitopatologia. Viçosa: Editora UFV, 93-105.
Guelfi Silva, D.R., Spehar, C.R., Marchi, G, Soares, D.A.S., Cancellier, E.L. & Martins, E.S. (2014). Yield, nutriente uptake and potassium use efficiency in rice fertilized eith crushed rocks. Academic Journals, 9, 455-464.
Knapik, J.G. & Angelo, A.C. (2007). Pó de basalto e esterco eqüino na produção de mudas de Prunus sellowiiKoehne (ROSACEAE). Floresta, 7(3), 427-436.
Hallama, M., Pedrun, C., Lambers, H. & Kandeler, E. (2019). Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil, 434, 7-45. https://doi.org/10.1007/s11104-018-3810-7.
Hanisch, A.L., Fonseca, J.A., Balbinot Junior, A.A. & Spagnollo, E. (2013). Efeito de pó de basalto no solo e em culturas anuais durante quatro safras, em sistema de plantio direto. Revista Brasileira de Agropecuária Sustentável, 3, 100-107.
Han, H.S. & Lee, K.D. (2005). Phosphate and growth of eggplant. Research journal of agriculture and biological Science. 176-180.
Hamdali, H., Hafidi, M., Virolle, M.J. et al. (2008). Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology, 24, 2565–2575 https://doi.org/10.1007/s11274-008-9817-0.
Harley, A. & Gilkes, R.J. (2000). Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutrient Cycling in Agroecosystems, 56, 11-36.
Janegitz M.C., Inoue B.S. & Rosolem CA (2013) Soil phosphorus pools as affected by brachiaria and white lupin. Ciência Rural, 43, 1381-1386. https://doi.org/10.1590/S0103- 84782013000800007.
Janeaitz, M.C., Souza, E.A. de. & Roselem, C.A. (2016). Brachiaria as a cover crop to improve phosphorus use efficiency in a no-till oxisol. Revista Brasileira de Ciência do Solo, 40 e0150128. https://doi.org/10.1590/18069657rbcs20150128 .
Júnior, J.J. Almeida et al. (2021). Análise das variáveis tecnológicas do milho em função das doses crescentes de condicionador pó de rocha. Brazilian Journal of Development, 7(10), 100992-100998.
Lambers, H. & Teste, F. (2013). Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-micorrhizal species at both extremes of nutrient avalilability play the same game? Plant, Cell & Environment, 36, 1911-1915.
Lopes-Assad M.L., Rosa M.M., Erler G. & Ceccato-Antonini S.R. (2006). Solubilização de pó-de-rocha por Aspergillus niger. Espaço e Geografia, 9, 1-16.
Lopes-Assad, M.L., Avansini, S.H., Rosa, M.M., Carvalho, J.R.P. de & Ceccato-Antonini, S.R. (2010). The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Canadian Journal of Microbiology, 56, 598-605.
Lopes, O.M.M., Carrilho, E.N.V.M. & Lopes-Assad, M.L.R.C. (2014). Effect of rock powder and vinasse on two types of soils. Revista Brasileira de Ciência Solo, 38, 1547-1557.
Li, C., Li, C., Zhang, H., Liao, H., & Wang, X. (2017). The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Physiologia Plantarum, 19(2), 215-227.
Martins, E.S., Resende, A.V., Oliveira, C.G. & Furtini Neto, A.E. (2010). Materiais silicáticos como fontes regionais de nutrientes e condicionadores de solos. In: Agrominerais para o Brasil. Francisco R. C. Fernandes, Adão B. da Luz, Zuleica C. Castilhos. ‐ Rio de Janeiro: CETEM/MCT, 380 p.
Melo, V. F., Castilhos, R.M. & Pinto, L.F., (2009). Reserva mineral do solo. In: Melo, V.F., Alleoni, L.R.F. Química e Mineralogia do Solo - Parte I - Conceitos Básicos. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 1, 251-332.
Merlin, A., Rosolem, C.A. & He, Z (2016). Non-labile phosphorus acquisition by Brachiaria, Journal of Plant Nutrition, 39(9), 1319-1327.
Menegale, M.L. de C., Castro, G.S.A., & Mancuso, M.A.C. (2015). Silício: interação com o sistema solo-planta. Journal of Agronomic Sciences,4 (especial), 435-454.
Osterroht, M. (2003). Rochagem para quê? In: OLIVEIRA, J. P. Rochagem-l: adubação com rochas silicatadas moídas, 20. Botucatu: Agroecológica, cap. 3, 12-15.
Pádua, E.J. (2012). Rochagem como adubação complementar para culturas oleaginosas. 2012. 91p. Dissertação (Mestrado em Ciência do Solo) - Universidade Federal de Lavras, Lavras, MG.
Parmar, P. & Sindhu, S.S. (2013). Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research, 3, 25-31.
Paiva, C.A.O. et al. (2018). Inoculantes de microrganismos promotores de crescimento em milho: transferindo a diversidade do laboratório para o campo. Boletim de Pesquisa e Desenvolvimento, 227. Sete Lagoas: Embrapa Milho e Sorgo, 19 p.
Prates, F.B.S. et al. (2012). Crescimento de mudas de pinhão-manso em resposta a adubação com superfosfato simples e pó-de-rocha. Revista Ciência Agronômica, 43(2), 207-213. https://doi.org/10.1590/S1806-66902012000200001.
Theodoro, S. H. (2002). Conflitos e uso sustentável dos recursos naturais. Rio de Janeiro: Garamond. 344 p.
Paredes Filho, M.V., Silva, A.B. & Florentino, L.A. 2020. Solubilization of Araxá natural phosphate and decomposition of plant resisues by bacterial isolates. Ciência e Agroecologia, 44. e008420. https://doi.org/10.1590/1413-7054202044008420.
Richardson, A.E. & Simpson, R.J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156(3), 989-996.
Rosolem C.A., Merlim A. & Bull J.C.L. (2014). Soil phosphorus dynamics as affected by Congo grass and P fertilizer. Scientia Agricola, 71(309), 15. doi:10.1590/0103-9016-2013-0345.
Schoninger E.L, Gatiboni L.C. & Ernani P.R. (2013). Fertilization with rock phosphate and kinetics of phosphorus uptake by soybean and cover crops of Brazilian cerrado soils. Semina: Ciências Agrárias, 34, 95-106.
Santos, H. G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Araujo Filho, J.C. & Oliveira, J.B., Cunha, T.J.F. (2018). Sistema Brasileiro de Classificação de Solos. Embrapa, DF, 356 p.
Santos, D.R, Gatiboni, L.C., Kaminski, J. (2008). Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Revista Ciência Rural, 38(2), 576-586.
Schaller, J., Faucherre, S., Joss, H., Obst, M., Goeckede, M., Planer-Friedrich, B., Peiffer, S., Gilfedder, B., & Elberling, B. (2019). Silicon increases the phosphorus availability of Arctic soils. Scientific Reports, 9(1), 1-11.
Van Straaten, P. (2006). Farming with rocks and minerals: challenges and opportunities. Anais da Academia Brasileira de Ciências, 78(4), 731-747.
Vassilev, N., Someus, E., Fernández-Serrano, M., Rodríguez, V., Roman, M.G., Reyes, A. & Vassileva, Maria. (2009). Novel approaches in phosphate-fertilizer production based on wastes derived from rock phosphate mining and food processing industry. In: Samuelson JP (ed) Industrial waste: environmental impact, disposal and treatment. Nova SciPubl, New York, 387–391.
Vassilev, N. et al. (2014). Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiology Journal, 31, 751-763.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Edleusa Pereira Seidel; Polyana Cequinatto; Luane Laise Oliveira Ribeiro
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.