Mecanismos da obesidade e importância dos compostos bioativos de frutas em sua regulação – uma revisão narrativa

Autores

DOI:

https://doi.org/10.33448/rsd-v11i4.27153

Palavras-chave:

Obesidade; Biomarcadores; Fitoquímicos; Frutas; Compostos bioativos.

Resumo

Uma dieta equilibrada é essencial no controle da obesidade. As frutas destacam-se pela presença de variados compostos bioativos, que representam ferramentas promissoras na prevenção e tratamento de diversas patologias. Na obesidade, fitoquímicos presentes nas frutas são relacionados a diferentes mecanismos de ação importantes, como atividade antioxidante e anti-inflamatória. Esta revisão narrativa visa entender as principais alterações fisiológicas da obesidade e os efeitos dos compostos bioativos de frutas sobre elas, identificando as substâncias mais conhecidas e seus prováveis mecanismos de ação sobre os principais biomarcadores. A pesquisa foi realizada nas bases de dados Google Acadêmico, Scielo, Pubmed e Science Direct, considerando revisões publicadas a partir de 2015 e estudos experimentais a partir de 2010. As citocinas inflamatórias e adipocinas são consideradas biomarcadores primários da obesidade, sendo considerados atualmente também a resistência insulínica, a menor tolerância à glicose, estresse oxidativo, microbiota intestinal, nutrientes e microRNAs. Três grupos de frutas destacaram-se por seus efeitos: as frutas cítricas, “berries” e frutas tropicais, fontes principalmente de flavonoides, antocianinas e carotenoides. Resultados experimentais apontam que as frutas e seus compostos podem auxiliar na prevenção e tratamento da obesidade através da regulação de citocinas inflamatórias e adipocinas envolvidas nos mecanismos desta doença, bem como propriedades antioxidantes e modulação da lipogênese. Mais estudos clínicos são necessários para entender sobre os mecanismos bioquímicos envolvidos, a fim de favorecer não só a produção de suplementos específicos como também a melhor prescrição clínica dietética.

Referências

Akamine, Y., Miura, M., Komori, H., Tamai, I., Ieiri, I., Yasui-Furukori, N., & Uno, T. (2015). The change of pharmacokinetics of fexofenadine enantiomers through the single and simultaneous grapefruit juice ingestion. Drug Metabolism and Pharmacokinetics, 30(5), 352–357. doi:10.1016/j.dmpk.2015.06.005

Alam, M. A., Subhan, N., Rahman, M. M., Uddin, S. J., Reza, H. M., & Sarker, S. D. (2014). Effect of Citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in Nutrition, 5(4), 404–417. doi:10.3945/an.113.005603

Alqurashi, R. M., Galante, L. A., Rowland, I. R., Spencer, J. P. E., & Commane, D. M. (2016). Consumption of a flavonoid-rich acai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men. American Journal of Clinical Nutrition, 104(5), 1227–1235. doi:10.3945/ajcn.115.128728

Alves, J. M., Teles, R. H. G., Gatto, C. do V. G., Muñoz, V. R., Cominetti, M. R., & Duarte, A. C. G. de O. (2019). Mapping Research in the Obesity, Adipose Tissue, and MicroRNA Field: A Bibliometric Analysis. Cells, 8(1581), 1–19. doi:10.3390/cells8121581

Alvarado, J. L., Leschot, A., Olivera-Nappa, Á., Salgado, A. M., Rioseco, H., Lyon, C., & Vigil, P. (2016). Delphinidin-rich maqui berry extract (Delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Research International, 2016. doi: 10.1155/2016/9070537

Anacleto, S. L., Lajolo, F. M., & Hassimotto, N. M. A. (2019). Estimation of dietary flavonoid intake of the Brazilian population: A comparison between the USDA and Phenol-Explorer databases. Journal of Food Composition and Analysis, 78, 1–8. doi:10.1016/j.jfca.2019.01.015

Andrade, J. K. S., Barros, R. G. C., Pereira, U. C., Nogueira, J. P., Gualberto, N. C., Oliveira, C. S., Shanmugam, S., & Narain, N. (2022). Bioaccessibility of bioactive compounds after in vitro gastrointestinal digestion and probiotics fermentation of Brazilian fruits residues with antioxidant and antidiabetic potential. Lwt, 153 (September 2021). doi:10.1016/j.lwt.2021.112469

Anhê, F. F., Nachbar, R. T., Varin, T. V., Trottier, J., Dudonné, S., Le Barz, M., Feutry, P., Pilon, G., Barbier, O., Desjardins, Y., Roy, D., & Marette, A. (2019). Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 68(3), 453–464. doi:10.1136/gutjnl-2017-315565

Aptekmann, N. P., & Cesar, T. B. (2010). Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas, 67(4), 343–347. doi:10.1016/j.maturitas.2010.07.009

Aranha, L. N., Silva, M. G., Uehara, S. K., Luiz, R. R., Nogueira Neto, J. F., Rosa, G., & Moraes de Oliveira, G. M. (2020). Effects of a hypoenergetic diet associated with açaí (Euterpe oleracea Mart.) pulp consumption on antioxidant status, oxidative stress and inflammatory biomarkers in overweight, dyslipidemic individuals. Clinical Nutrition, 39(5), 1464–1469. doi:10.1016/j.clnu.2019.06.008

Ashokkumar, K., Sivakumar, P., Elayabalan, S., Shobana, V. G., & Pandiyan, M. (2018). Nutritional value of cultivars of Banana (Musa spp.) and its future prospects. Journal of Pharmacognosy and Phytochemistry, 7(3), 2972–2977. https://www.phytojournal.com/archives?year=2018&vol=7&issue=3&ArticleId=4620

Ávila, B. P., Cardozo, L. O., Alves, G. D., Pereira, A. M., Gularte, M. A., & de Oliveira, R. P. (2020). Targeted Chemical and Sensory Profiling to Guide Consumption of Blood Orange. Journal of Culinary Science and Technology, 1–16. doi: 10.1080/15428052.2020.1843581

Azzini, E., Venneria, E., Ciarapica, D., Foddai, M. S., Intorre, F., Zaccaria, M., Maiani, F., Palomba, L., Barnaba, L., Tubili, C., Maiani, G., & Polito, A. (2017). Effect of Red Orange Juice Consumption on Body Composition and Nutritional Status in Overweight/Obese Female: A Pilot Study. Oxidative Medicine and Cellular Longevity, 2017. doi:10.1155/2017/1672567

Balaji, M., Ganjayi, M. S., Kumar, G. E. N. H., Parim, B. N., Mopuri, R., & Dasari, S. (2016). A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obesity Research and Clinical Practice, 10(4), 363–380. doi:10.1016/j.orcp.2015.12.004

Baradaran, A., Dehghanbanadaki, H., Naderpour, S., Pirkashani, L. M., Rajabi, A., Rashti, R., Riahifar, S., & Moradi, Y. (2021). The association between Helicobacter pylori and obesity: a systematic review and meta-analysis of case–control studies. Clinical Diabetes and Endocrinology, 7(1), 1–11. doi:10.1186/s40842-021-00131-w

Basu, A., Du, M., Leyva, M. J., Sanchez, K., Betts, N. M., Wu, M., Aston, C. E., & Lyons, T. J. (2010). Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. Journal of Nutrition, 140(9), 1582–1587. doi:10.3945/jn.110.124701

Basu, A., Betts, N. M., Leyva, M. J., Fu, D., Aston, C. E., & Lyons, T. J. (2015). Acute cocoa supplementation increases postprandial hdl cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. Journal of Nutrition, 145(10), 2325–2332. doi:10.3945/jn.115.215772

Batista, Â. G., Lenquiste, S. A., Moldenhauer, C., Godoy, J. T., Reis, S. M. P. M., & Maróstica Júnior, M. R. (2013). Jaboticaba (Myrciaria jaboticaba (Vell.) Berg.) peel improved triglycerides excretion and hepatic lipid peroxidation in high-fat-fed rats. Revista de Nutrição, 26(5), 571–581. doi:10.1590/S1415-52732013000500008

Bonet, M. L., Canas, J. A., Ribot, J., & Palou, A. (2015). Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Archives of Biochemistry and Biophysics, 572, 112–125. doi:10.1016/j.abb.2015.02.022

Boron, W., & Boulpaep, E. (2017). Medical physiology (3 rd). Elsevier.

Budreviciute, A., Damiati, S., Sabir, D. K., Onder, K., Schuller-Goetzburg, P., Plakys, G., Katileviciute, A., Khoja, S., & Kodzius, R. (2020). Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. In Frontiers in Public Health, 8, 1–11. doi:10.3389/fpubh.2020.574111

Calvano, A., Izuora, K., Oh, E. C., Ebersole, J. L., Lyons, T. J., & Basu, A. (2019). Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food and Function, 10(10), 6227–6243. doi:10.1039/c9fo01426h

Cardile, V., Graziano, A. C. E., & Venditti, A. (2015). Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. Natural Product Research, 2015, 37–41. doi:10.1080/14786419.2014.1000897

Carneiro, A. P. de G., Aguiar, A. L. L. de, Gonzaga, M. L. C., & Soares, D. J. (2020). Estabilidade de compostos bioativos, atividade antioxidante e microbiológica de açaí em pó (Euterpe oleracea Mart.). Research, Society and Development, 9(7), 1–15. doi:10.33448/rsd-v9i7.3810

Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10 (5). doi:10.15210/jonah.v10i5.19924

Cedrim, P. C. A. S., Barros, E. M. A., & Nascimento, T. G. (2018). Antioxidant properties of acai (Euterpe oleracea) in the metabolic syndrome. Brazilian Journal of Food Technology, 21. doi:10.1590/1981-6723.09217

César, N. R., Moreno, L. G., Melo, D. S., Oliveira, L. G., Silva, P. H. E., Giordani, S., Magalhães, F. de C., Dias-Peixoto, M. F., & Esteves, E. A. (2017). The Partial Replacement of Lard by Caryocar brasiliense Oil in a Western Diet improves Cardiovascular Risk Factors in Rats. Food and Nutrition Report, 1(4), 1–8. doi:10.24218/fnr.2017.16

Chang, S. K., Alasalvar, C., & Shahidi, F. (2019). Superfruits: Phytochemicals, antioxidant efficacies, and health effects–A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(10), 1580–1604. doi:10.1080/10408398.2017.1422111

Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. doi:10.1007/s13197-018-3221-z

Chen, Q., Wang, D., Tan, C., Hu, Y., Sundararajan, B., & Zhou, Z. (2020). Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local Citrus cultivars. Plants, 9(2), 1–18. doi:10.3390/plants9020196

Chun, O. K., Chung, S. J., & Song, W. O. (2007). Estimated dietary flavonoid intake and major food sources of U.S. adults. The Journal of Nutrition, 137(5), 1244–1252. doi: 10.1093/jn/137.5.1244

Coats, R., & Martirosyan, D. (2015). The effects of bioactive compounds on biomarkers of obesity. Functional Foods in Health and Disease, 5(11), 365–380. doi:10.31989/ffhd.v5i11.219

Cornara, L., Xiao, J., Smeriglio, A., Trombetta, D., & Burlando, B. (2020). Emerging Exotic Fruits: New Functional Foods in the European Market. eFood, 1(2), 126. doi:10.2991/efood.k.200406.001

Cornejo-Pareja, I., Muñoz-Garach, A., Clemente-Postigo, M., & Tinahones, F. J. (2019). Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 72, 26–37. doi:10.1038/s41430-018-0306-8

Coronel, J., Pinos, I., & Amengual, J. (2019). β-carotene in obesity research: Technical considerations and current status of the field. Nutrients, 11(4). doi:10.3390/nu11040842

Cristóbal-Luna, J. M., Álvarez-González, I., Madrigal-Bujaidar, E., & Chamorro-Cevallos, G. (2018). Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food and Chemical Toxicology, 112, 224–234. doi:10.1016/j.fct.2017.12.038

Dallas, C., Gerbi, A., Elbez, Y., Caillard, P., Zamaria, N., & Cloarec, M. (2014). Clinical study to assess the efficacy and safety of a Citrus polyphenolic extract of red orange, grapefruit, and orange (sinetrol-xpur) on weight management and metabolic parameters in healthy overweight individuals. Phytotherapy Research, 28(2), 212–218. doi:10.1002/ptr.4981

Devalaraja, S., Jain, S., & Yadav, H. (2011). Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Research International, 44(7), 1856–1865. doi:10.1016/j.foodres.2011.04.008

Dembitsky, V. M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S., & Gorinstein, S. (2011). The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Research International Journal, 44(7), 1671–1701. doi:10.1016/j.foodres.2011.03.003

Dima, C., Assadpour, E., Dima, S., & Jafari, S. M. (2020). Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2862–2884. doi:10.1111/1541-4337.12623

Donado-Pestana, C. M., Moura, M. H. C., Araujo, R. L., Santiago, G. L., Barros, H. R.M., & Genovese, M. I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. doi: 10.1016/j.cofs.2018.01.001

Dosoky, N. S., & Setzer, W. N. (2018). Biological activities and safety of Citrus spp. Essential oils. International Journal of Molecular Sciences, 19(7), 1–25. doi:10.3390/ijms19071966

Dow, C. A., Going, S. B., Chow, H. H. S., Patil, B. S., & Thomson, C. A. (2012). The effects of daily consumption of grapefruit on body weight, lipids, and blood pressure in healthy, overweight adults. Metabolism: Clinical and Experimental, 61(7), 1026–1035. doi:10.1016/j.metabol.2011.12.004

Efraim, P., Alves, A. B., & Jardim, D. C. P. (2011). Revisão: Polifenóis em cacau e derivados: teores, fatores de variação e efeitos na saúde. Brazilian Journal of Food Technology, 14(03), 181–201. doi:10.4260/BJFT2011140300023

El-Beltagi, H. S., Mohamed, H. I., Safwat, G., Gamal, M., & Megahed, B. M. H. (2019). Chemical Composition and Biological Activity of Physalis peruviana L. Gesunde Pflanzen, 71, 113–122. doi:10.1007/s10343-019-00456-8

Endalifer, M. L., & Diress, G. (2020). Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. Journal of Obesity, 1–8. doi:10.1155/2020/6134362

Fachinello, J. C., Pasa, M. S., Schmtiz, J. D., & Betemps, D. L. (2011). Situation and perspectives of temperate fruit crops in Brazil. Revista Brasileira de Fruticultura, 33(Special Issue), 109–120. doi:10.1590/S0100-29452011000500014

Fan, X., Xi, Y., Zhao, H., Liu, B., Cao, J., & Jiang, W. (2018). Improving fresh apricot (Prunus armeniaca L.) quality and antioxidant capacity by storage at near freezing temperature. Scientia Horticulturae, 231, 1–10. doi:10.1016/j.scienta.2017.12.015

Farag, M. A., Abib, B., Ayad, L., & Khattab, A. R. (2020). Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chemistry, 331. doi:10.1016/j.foodchem.2020.127306

Ferrari, R. (2015) Writing narrative style literature reviews. Medical Writing, 24(4). doi:10.1179/2047480615z.000000000329

Filho, F. F. B., Ataíde, W. F., Machado, M. R. F., Stella, A. E., Nebo, L., Benite-Ribeiro, S. A., Guilherme, F. A. G., & Amaral, A. V. C. (2021). Therapeutic applications of Caryocar brasiliense: Systematic review. Journal of Medicinal Plants Research, 15(9), 380–389. doi:10.5897/JMPR2021.7136

Food and Agriculture Organization of the United Nations - FAO. (2020). The International Year of Fruits and Vegetables, 2021, background paper. In Fruit and vegetables – your dietary essentials. doi:10.4060/cb2395en

Fourati, M., Smaoui, S., Hlima, H. Ben, Elhadef, K., Braïek, O. Ben, Ennouri, K., Mtibaa, A. C., & Mellouli, L. (2020). Bioactive Compounds and Pharmacological Potential of Pomegranate (Punica granatum) Seeds - A Review. Plant Foods for Human Nutrition, 75(4), 477–486. doi:10.1007/s11130-020-00863-7

Francisco, V., Pino, J., Campos-Cabaleiro, V., Ruiz-Fernández, C., Mera, A., Gonzalez-Gay, M. A., Gómez, R., & Gualillo, O. (2018). Obesity, fat mass and immune system: Role for leptin. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00640

Fraga, C.G., Croft, K. D., Kennedy, D. O. & Tomás-Barberán. F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10, 514. doi:10.1039/c8fo01997e

Fujioka, K., Greenway, F., Sheard, J., & Ying, Y. (2006). The effects of grapefruit on weight and insulin resistance: Relationship to the metabolic syndrome. Journal of Medicinal Food, 9(1), 49–54. doi: 10.1089/jmf.2006.9.49

Gandhi, G. R., Vasconcelos, A. B. S., Wu, D-T., Li, H-B, Antony, P. J., Li, H., Geng, F., Gurgel, R. Q., Narain, N., & Gan, R. Y. (2020). Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients, 12(10), 1–32. doi:10.3390/nu12102907

Garcia-Diaz, D. F., Jimenez, P., Reyes-Farias, M., Soto-Covasich, J., & Costa, A. G. V. (2019). A Review of the Potential of Chilean Native Berries in the Treatment of Obesity and its Related Features. Plant Foods for Human Nutrition, 74(3), 277–286. doi:10.1007/s11130-019-00746-6

Geöcze, K. C., Barbosa, L. C. A., Lima, C. F., Ferruzzi, M. G., Fidêncio, P. H., Sant’ana, H. M. P., & Silvério, F. O. (2021). Caryocar brasiliense Camb. fruits from the Brazilian Cerrado as a rich source of carotenoids with pro-vitamin A activity. Journal of Food Composition and Analysis, 101. doi:10.1016/j.jfca.2021.103943

Gomes, J. V. P., Rigolon, T. C. B., Souza, M. S. S., Alvarez-Leite, J. I., Lucia, C. M., Martino, H. S. D., & Rosa, C. O. B. (2019). Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition, 66, 192–202. doi:10.1016/j.nut.2019.05.005

Gordon, A., Cruz, A. P. G., Cabral, L. M. C., Freitas, S. C., Taxi, C. M. A. D., Donangelo, C. M., Mattietto, R. A., Friedrich, M., Matta, V. M., & Marx, F. (2012). Chemical characterization and evaluation of antioxidant properties of Açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chemistry, 133(2), 256–263. doi:10.1016/j.foodchem.2011.11.150

Gündeşli, M. A., Korkmaz, N., & Okatan, V. (2019). Polyphenol content and antioxidant capacity of berries: A review. International Journal of Agriculture, Forestry and Life Sciences, 3(2), 350–361. https://dergipark.org.tr/en/pub/ijafls/issue/47015/649812

Halib, H., Ismail, A., Mohd Yusof, B. N., Osakabe, N., & Daud, Z. A. M. (2020). Effects of cocoa polyphenols and dark chocolate on obese adults: A scoping review. Nutrients, 12(12), 1–19. doi:10.3390/nu12123695

Harari, A., Coster, A. C. F., Jenkins, A., Xu, A., Greenfield, J. R., Harats, D., Shaish, A., & Samocha-Bonet, D. (2020). Obesity and Insulin Resistance Are Inversely Associated with Serum and Adipose Tissue Carotenoid Concentrations in Adults. Journal of Nutrition, 150(1), 38–46. doi:10.1093/jn/nxz184

Heymsfield, S. B., & Wadden, T. A. (2017). Mechanisms, Pathophysiology, and Management of Obesity. New England Journal of Medicine, 376(3), 254–266. doi:10.1056/NEJMra1514009

Hollman, P. C. H., & Arts, I. C. W. (2000). Flavonols, flavones and flavanols - Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1081–1093. doi:10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G

Hosseini, B., Saedisomeolia, A., Wood, L. G., Yaseri, M., & Tavasoli, S. (2016). Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complementary Therapies in Clinical Practice, 22, 44–50. doi:10.1016/j.ctcp.2015.12.003

Hsia, D. S., Zhang, D. J., Beyl, R. S., Greenway, F. L., & Khoo, C. (2020). Effect of daily consumption of cranberry beverage on insulin sensitivity and modification of cardiovascular risk factors in adults with obesity: A pilot, randomised, placebo-controlled study. British Journal of Nutrition, 124(6), 577–585. doi:10.1017/S0007114520001336

Hwang, S. L., Shih, P. H., & Yen, G. C. (2012). Neuroprotective effects of Citrus flavonoids. Journal of Agricultural and Food Chemistry, 60(4), 877–885. doi:10.1021/jf204452y

Ibero-Baraibar, I., Suárez, M., Arola-Arnal, A., Zulet, M. A., & Martinez, J. A. (2016). Cocoa extract intake for 4 weeks reduces postprandial systolic blood pressure response of obese subjects, even after following an energy-restricted diet. Food and Nutrition Research, 60(30449). doi:10.3402/fnr.v60.30449

Ikeoka, D., Mader, J. K., & Pieber, T. R. (2010). Adipose tissue, inflammation and cardiovascular disease. Revista Da Associação Medica Brasileira, 56(1), 116–121. doi:10.1161/01.RES.0000163635.62927.34

Jacob, J., Rajiv, P., Gopalan, R., & Lakshmanaperumalsamy, P. (2019). An overview of phytochemical and pharmacological potentials of Punica granatum L. Pharmacognosy Journal, 11(5), 1167–1171. doi:10.5530/pj.2019.11.181

Jandari, S., Hatami, E., Ziaei, R., Ghavami, A., & Yamchi, A. M. (2020). The effect of pomegranate (Punica granatum) supplementation on metabolic status in patients with type 2 diabetes: A systematic review and meta-analysis. Complementary Therapies in Medicine, 52, 102478. doi:10.1016/j.ctim.2020.102478

Janssen, F., Bardoutsos, A., & Vidra, N. (2020). Obesity Prevalence in the Long-Term Future in 18 European Countries and in the USA. Obesity Facts, 13, 514–527. doi:10.1159/000511023

Jean-Marie, E., Bereau, D., Poucheret, P., Guzman, C., Boudard, F., & Robinson, J. C. (2021). Antioxidative and immunomodulatory potential of the endemic french guiana wild cocoa “Guiana.” Foods, 10(522), 1–20. doi:10.3390/foods10030522

Jiao, X., Wang, Y., Lin, Y., Lang, Y., Li, E., Zhang, X., Zhang, Q., Feng, Y., Meng, X., & Li, B. (2019). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. Journal of Nutritional Biochemistry, 64, 88–100. doi:10.1016/j.jnutbio.2018.07.008

Jimenez, P., Garcia, P., Quitral, V., Vasquez, K., Parra-Ruiz, C., Reyes-Farias, M., Garcia-Diaz, D. F., Robert, P., Encina, C., & Soto-Covasich, J. (2021). Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Reviews International, 37(6), 619–655. doi:10.1080/87559129.2020.1717520

Joseph, S. V., Edirisinghe, I., & Burton-Freeman, B. M. (2014). Berries: Anti-inflammatory effects in humans. Journal of Agricultural and Food Chemistry, 62(18), 3886–3903. doi:10.1021/jf4044056

Kadouh, H. C., & Acosta, A. (2017). Current paradigms in the etiology of obesity. Techniques in Gastrointestinal Endoscopy, 19(1), 2–11. doi:10.1016/j.tgie.2016.12.001

Kaneko, T., & Shirakawa, T. (2018). A Study on Supplement Containing Moro (Citrus Sinensis (L.) Osbeck) Orange Extract ofa Randomized Placebo-controlled Trial Part 2:Analysis of Efficacy on BMI Reduction. Medical Treatment and New Medicine, 55(1), 65–69. https://www.shinryo-to-shinyaku.com/db/pdf/sin_0055_01_0065.pdf

Karasawa, M. M. G., & Mohan, C. (2018). Fruits as Prospective Reserves of bioactive Compounds: A Review. Natural Products and Bioprospecting, 8(5), 335–346. doi:10.1007/s13659-018-0186-6

Karczewski, J., Śledzińska, E., Baturo, A., Jończyk, I., Maleszko, A., Samborski, P., Begier-Krasińska, B., & Dobrowolska, A. (2018). Obesity and inflammation. European Cytokine Network, 29(3), 83–94. doi:10.1684/ecn.2018.0415

Kasali, F. M., Tusiimire, J., Kadima, J. N., Tolo, C. U., Weisheit, A., & Agaba, A. G. (2021). Ethnotherapeutic Uses and Phytochemical Composition of Physalis peruviana L.: An Overview. The Scientific World Journal, 1–22. doi:10.1155/2021/5212348

Kelebek, H. (2010). Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Industrial Crops and Products, 32(3), 269–274. doi:10.1016/j.indcrop.2010.04.023

Khan, N., Monagas, M., Andres-Lacueva, C., Casas, R., Urpí-Sardà, M., Lamuela-Raventós, R. M., & Estruch, R. (2012). Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutrition, Metabolism and Cardiovascular Diseases, 22(12), 1046–1053. doi:10.1016/j.numecd.2011.02.001

Khan, M. K., HumanZill-E-Huma, & Dangles, O. (2014). A comprehensive review on flavanones, the major Citrus polyphenols. Journal of Food Composition and Analysis, 33(1), 85–104. doi:10.1016/j.jfca.2013.11.004

Khan, R. A., Mallick, N., & Feroz, Z. (2016). Anti-inflammatory effects of Citrus sinensis L., Citrus paradisi L. and theis combinations. Pakistan Journal of Pharmaceutical Sciences, 29(3), 843–852.

Kim, H., Simbo, S. Y., Fang, C., McAlister, L., Roque, A., Banerjee, N., Talcott, S. T., Zhao, H., Kreider, R. B., & Mertens-Talcott, S. U. (2018). Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food and Function, 9(6), 3097–3103. doi:10.1039/C8FO00595H

Kim, M., Yun, S. K., Kim, S. S., Park, Y. S., Joa, J., & Han, S. (2021). Influence of freezing temperatures on metabolite composition and antioxidant activity in Shiranuhi mandarin. Scientia Horticulturae, 288(110397). doi:10.1016/j.scienta.2021.110397

Klimis-Zacas, D., Vendrame, S., & Kristo, A. S. (2016). Wild blueberries attenuate risk factors of the metabolic syndrome. Journal of Berry Research, 6(2), 225–236. doi:10.3233/JBR-160136

Konstantinidi, M., & Koutelidakis, A. E. (2019). Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences. Medicines, 6(3), 94. doi:10.3390/medicines6030094

Kowalska, K., & Olejnik, A. (2016). Cranberries (Oxycoccus quadripetalus) inhibit pro-inflammatory cytokine and chemokine expression in 3T3-L1 adipocytes. Food Chemistry, 196, 1137–1143. doi:10.1016/j.foodchem.2015.10.069

Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griel, A. E., & Etherton, T. D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine, 113(9, 2), 71–88. doi:10.1016/s0002-9343(01)00995-0

Kristo, A. S., Klimis-Zacas, D., & Sikalidis, A. K. (2016). Protective role of dietary berries in cancer. Antioxidants, 5(37), 1–23. doi:10.3390/antiox5040037

Lail, H. L., Feresin, R. G., Hicks, D., Stone, B., Price, E., & Wanders, D. (2021). Berries as a treatment for obesity-induced inflammation: Evidence from preclinical models. Nutrients, 13(2), 1–18. doi:10.3390/nu13020334

Lee, Y. M., Yoon, Y., Yoon, H., Park, H. M., Song, S., & Yeum, K. J. (2017). Dietary anthocyanins against obesity and inflammation. Nutrients, 9(10), 1–15. doi:10.3390/nu9101089

Lenquiste, S. A., Lamas, C. A., Marineli, R. S., Moraes, E. A., Borck, P. C., Camargo, R. L., Quitete, V. H. A. C., Carneiro, E. M., & Junior, M. R. M. (2019). Jaboticaba peel powder and jaboticaba peel aqueous extract reduces obesity, insulin resistance and hepatic fat accumulation in rats. Food Research International, 120, 880–887. doi:10.1016/j.foodres.2018.11.053

Li, S., Pan, M. H., Lo, C. Y., Tan, D., Wang, Y., Shahidi, F., & Ho, C. T. (2009). Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods, 1(1), 2–12. doi:10.1016/j.jff.2008.09.003

Lima, L. P. de, & Barbosa, A. de P. (2021). A review of the lipolytic effects and the reduction of abdominal fat from bioactive compounds and moro orange extracts. Heliyon, 7(8). doi:10.1016/j.heliyon.2021.e07695

Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530–545. doi:10.1111/j.1541-4337.2012.00201.x

Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., Xiao, C., Lu, C., & Liu, Y. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal, 9(1), 1–14. doi:10.1186/s13065-015-0145-9

Maciel, L. F., Felício, A. L. de S. M., & Hirooka, E. Y. (2017). Bioactive compounds by UPLC-PDA in different cocoa clones (Theobroma cacao L.) developed in the Southern region of Bahia, Brazil. British Food Journal, 119(9). doi:10.1108/BFJ-09-2016-0423

Makino-Wakagi, Y., Yoshimura, Y., Uzawa, Y., Zaima, N., Moriyama, T., & Kawamura, Y. (2012). Ellagic acid in pomegranate suppresses resistin secretion by a novel regulatory mechanism involving the degradation of intracellular resistin protein in adipocytes. Biochemical and Biophysical Research Communications, 417(2), 880–885. doi:10.1016/j.bbrc.2011.12.067

Mallick, N., & Khan, R. A. (2015). Effect of Citrus paradisi and Citrus sinensis on glycemic control in rats. African Journal of Pharmacy and Pharmacology, 9(3), 53–59. doi:10.5897/AJPP2014.4185

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747. doi:10.1093/ajcn/79.5.727

Martínez-Navarrete, N., Vidal, M. M. C. & Lahuerta, J. J. M. (2008). Los compuestos bioactivos de las frutas y sus efectos en la salud. Actividad Dietetica, 12(2), 64–68. doi:10.1016/S1138-0322(08)75623-2

Martino, H. S. D., Dias, M. M. dos S., Noratto, G., Talcott, S., & Mertens-Talcott, S. U. (2016). Anti-lipidaemic and anti-inflammatory effect of açai (Euterpe oleracea Martius) polyphenols on 3T3-L1 adipocytes. Journal of Functional Foods, 23, 432–443. doi:10.1016/j.jff.2016.02.037

Martinsen, B. K., Aaby, K., & Skrede, G. (2020). Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, 316(126297). doi:10.1016/j.foodchem.2020.126297

Michicotl-Meneses, M. M., Thompson-Bonilla, M. D. R., Reyes-López, C. A., García-Pérez, B. E., López-Tenorio, I. I., Ordaz-Pichardo, C., & Jaramillo-Flores, M. E. (2021). Inflammation markers in adipose tissue and cardiovascular risk reduction by pomegranate juice in obesity induced by a hypercaloric diet in wistar rats. Nutrients, 13(8), 1–17. doi:10.3390/nu13082577

Mihaylova, D., Popova, A., Desseva, I., Petkova, N., Stoyanova, M., Vrancheva, R., Slavov, A., Slavchev, A., & Lante, A. (2021). Comparative study of early-and mid-ripening peach (Prunus persica L.) varieties: Biological activity, macro-, and micro-nutrient profile. Foods, 10(164). doi:10.3390/foods10010164

Montalbano, G., Mania, M., Guerrera, M. C., Laurà, R., Abbate, F., Levanti, M., Maugeri, A., Germanà, A., & Navarra, M. (2019). Effects of a flavonoid-rich extract from Citrus sinensis juice on a diet-induced obese zebrafish. International Journal of Molecular Sciences, 20(20). doi:10.3390/ijms20205116

Moreira-Araújo, R. S. R., Barros, N. V. A., Porto, R. G. C. L., Brandão, A. C. A. S., Lima, A. de, & Fett, R. (2019). Bioactive compounds and antioxidant activity three fruit species from the Brazilian Cerrado. Revista Brasileira de Fruticultura, 41(3). doi:10.1590/0100-29452019011

Moreno, L. G., Oliveira, L. G., Melo, D. S., Pereira, L. V. C., Costa, K. B., Miranda, J. L., Vieira, E. R., Magalhes, F. C., Dias-Peixoto, M. F., & Esteves, E. A. (2016). Caryocar brasiliense fruit intake ameliorates hepatic fat deposition and improves intestinal structure of rats. Journal of Medicinal Plants Research, 10(37), 640–648. doi:10.5897/JMPR2016.6222

Mottaghipisheh, J., Ayanmanesh, M., Babadayei-Samani, R., Javid, A., Sanaeifard, M., Vitalini, S., & Iriti, M. (2018). Total anthocyanin, flavonoid, polyphenol and tannin contents of seven pomegranate cultivars grown in Iran. Acta Scientiarum Polonorum, Technologia Alimentaria, 17(3), 211–217. doi:10.17306/J.AFS.2018.0584

Mounien, L., Tourniaire, F., & Landrier, J.-F. (2019). Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effect. Nutrients, 11, 1–14. doi:10.3390/nu11071562

Mulvihill, E. E., Burke, A. C., & Huff, M. W. (2016). Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis. Annual Review of Nutrition, 36, 275–299. doi:10.1146/annurev-nutr-071715-050718

Munguía, L., Gutiérrez-Salmeán, G., Hernández, M., Ortiz, A., Sanchez, M. E., Nájera, N., Meaney, E., Rubio-Gayosso, I., & Ceballos, G. (2015). Beneficial effects of a flavanol-enriched cacao beverage on anthropometric and cardiometabolic risk profile in overweight subjects. Revista Mexicana de Cardiologia, 26(2), 78–86. http://www.scielo.org.mx/pdf/rmc/v26n2/v26n2a4.pdf

Murri, M., & el Azzouzi, H. (2018). MicroRNAs as regulators of mitochondrial dysfunction and obesity. American Journal of Physiology - Heart and Circulatory Physiology, 315(2), H291–H302. doi:10.1152/ajpheart.00691.2017

Mykkänen, O. T., Huotari, A., Herzig, K. H., Dunlop, T. W., Mykkänen, H., & Kirjavainen, P. V. (2014). Wild blueberries (Vaccinium myrtillus) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PLoS ONE, 9(12), 1–21. doi:10.1371/journal.pone.0114790

Nair, A. R., Mariappan, N., Stull, A. J., & Francis, J. (2017). Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Food and Function, 8(11), 4118–4128. doi:10.1039/c7fo00815e

Nascimento-Silva, N. R. R. do, & Naves, M. M. V. (2019). Potential of Whole Pequi (Caryocar spp.) Fruit-Pulp, Almond, Oil, and Shell-as a Medicinal Food. Journal of Medicinal Food, 22(9), 952–962. doi:10.1089/jmf.2018.0149

Nascimento, O. V., Boleti, A. P. A., Yuyama, L. K. O., & Lima, E. S. (2013). Effects of diet supplementation with Camu-camu (Myrciaria dubia HBK McVaugh) fruit in a rat model of diet-induced obesity. Anais Da Academia Brasileira de Ciências, 85(1), 355–363. doi:10.1590/S0001-37652013005000001

Neri-Numa, I. A., Sancho, R. A. S., Pereira, A. P. A., & Pastore, G. M. (2018). Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International, 103, 345–360. doi:10.1016/j.foodres.2017.10.053

Nguyen, T. M. D. (2020). Adiponectin: Role in Physiology and Pathophysiology Abstract. International Journal of Preventive Medicine, 11(136). doi: 10.4103/ijpvm.IJPVM_193_20

Nickols-Richardson, S. M., Piehowski, K. E., Metzgar, C. J., Miller, D. L., & Preston, A. G. (2014). Changes in body weight, blood pressure and selected metabolic biomarkers with an energy-restricted diet including twice daily sweet snacks and once daily sugar-free beverage. Nutrition Research and Practice, 8(6), 695–704. doi:10.4162/nrp.2014.8.6.695

Nijhawan, P., Arora, S., & Behl, T. (2019). Intricate role of oxidative stress in the progression of obesity. Obesity Medicine, 15, 100125. doi:10.1016/j.obmed.2019.100125

Nile, S. H., Kim, D. H., & Keum, Y. S. (2015). Determinação da composição antociânica e da actividade antioxidante da uva de diferentes variedades de videira. Ciencia e Tecnica Vitivinicola, 30(2), 60–68. doi:10.1051/ctv/20153002060

Nile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30, 134–144. doi:10.1016/j.nut.2013.04.007

Nimptsch, K., Konigorski, S., & Pischon, T. (2019). Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism Clinical and Experimental, 92, 61–70. doi:10.1016/j.metabol.2018.12.006

Olivares-Caro, L., Radojkovic, C., Chau, S. Y., Nova, D., Bustamante, L., Neira, J. Y., Perez, A. J., & Mardones, C. (2020). Berberis microphylla G. Forst (calafate) berry extract reduces oxidative stress and lipid peroxidation of human LDL. Antioxidants, 9(12), 1–20. doi:10.3390/antiox9121171

Oliveira, A. P., Guimarães, I. C., & Menezes, E. G. T. (2017). Caracterização da Polpa de Abacate (Persea americana MILL) da Região do Alto Paranaíba. The Journal of Engineering and Exact Sciences - JCEC, 03(06), 813–818. doi:10.18540/jcecvl3iss6pp0813-0818

Oussaada, S. M., van Galen, K. A., Cooiman, M. I., Kleinendorst, L., Hazebroek, E. J., van Haelst, M. M., ter Horst, K. W., & Serlie, M. J. (2019). The pathogenesis of obesity. Metabolism: Clinical and Experimental, 92, 26–36. doi:10.1016/j.metabol.2018.12.012

Park, M., Choi, J., & Lee, H.-J. (2020). Altered gut microbiota due to daily intake of flavonoid-rich orange juice regulate depressive symptoms. Research Square, 1–23. doi:10.21203/rs.3.rs-19114/v1

Patil, B. S., Jayaprakasha, G. K., Chidambara Murthy, K. N., & Vikram, A. (2009). Bioactive compounds: Historical perspectives, opportunities and challenges. Journal of Agricultural and Food Chemistry, 57(18), 8142–8160. doi:10.1021/jf9000132

Phan, M. A. T., Paterson, J., Bucknall, M., & Arcot, J. (2018). Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Critical Reviews in Food Science and Nutrition, 58(8), 1310–1329. doi:10.1080/10408398.2016.1254595

Pino-De la Fuente, F., Nocetti, D., Sacristán, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J. L., Espinosa, A., & Puente, L. (2020). Physalis peruviana l. Pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients, 12(3), 1–11. doi:10.3390/nu12030700

Plaza, M., Batista, Â. G., Cazarin, C. B. B., Sandahl, M., Turner, C., Östman, E., & Maróstica Júnior, M. R. (2016). Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chemistry, 211, 185–197. doi:10.1016/j.foodchem.2016.04.142

Poyrazoğlu, E., Gökmen, V., & Artιk, N. (2002). Organic Acids and Phenolic Compounds in Pomegranates (Punica granatum L.) Grown in Turkey. Journal of Food Composition and Analysis, 15(5), 567–575. doi:10.1006/jfca.2002.1071

Pratheeshkumar, P., Sreekala, C., Zhang, Z., Budhraja, A., Ding, S., Son, Y., Wang, X., Hitron, A., Hyun-jung, K., Wang, L., & Lee, J. (2012). Cancer Prevention with Promising Natural Products: Mechanisms of Action and Molecular Targets. Anticancer Agents Med Chem, 12(10), 1159–1184. doi:10.2174/187152012803833035

Radunić, M., Šimera, E., Lozo, K., Gadže, J., & Jukić Špika, M. (2017). Pomological traits, phenol and flavonoid content and antioxidant activity introduced the pomegranate (Punica granatum L.) cultivars grown in the Mediterranean part of Croatia. Pomologia Croatica, 21(3–4), 171–180. doi:10.33128/pc.21.3-4.5

Rahmani, A. H., Alsahli, M. A., & Almatroodi, S. A. (2017). Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacognosy Journal, 9(5), 689–695. doi:10.5530/pj.2017.5.109

Rakariyatham, K., Wu, X., Tang, Z., Han, Y., Wang, Q., & Xiao, H. (2018). Synergism between luteolin and sulforaphane in anti-inflammation. Food and Function, 9(10), 5115–5123. doi:10.1039/c8fo01352g

Ramirez, L. A., Quezada, J., Duarte, L., Concha, F., Escobillana, L., Rincon-Cervera, M. A., Perez-Bravo, F., Elorza, A. A., Bravo-Sagua, R., & Garcia-Diaz, D. F. (2021). The administration of an extract from Berberis microphylla stimulates energy expenditure, thermogenesis and mitochondrial dynamics in mice brown adipose tissue. Food Bioscience, 41(February), 100988. doi:10.1016/j.fbio.2021.100988

Rangel-Huerta, O. D., Aguilera, C. M., Martin, M. V., Soto, M. J., Rico, M. C., Vallejo, F., Tomas-Barberan, F., Perez-de-la-Cruz, A. J., Gil, A., & Mesa, M. D. (2015). Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. Journal of Nutrition, 145(8), 1808–1816. doi:10.3945/jn.115.213660

Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216. doi:10.1016/j.phrs.2007.01.012

Ribeiro, C., Dourado, G., & Cesar, T. (2017). Orange juice allied to a reduced-calorie diet results in weight loss and ameliorates obesity-related biomarkers: A randomized controlled trial. Nutrition, 38, 13–19. doi:10.1016/j.nut.2016.12.020

Rodrigues, S., Silva, E. O., & Brito, E. S. (2017). Exotic Fruits Reference Guide. Academic Press.

Rodrigues, L., Donado-Pestana, C. M., Moura, M. H. C., Rossi e Silva, R., Pessoa, É. V. M., & Genovese, M. I. (2021). Phenolic compounds from jaboticaba (Plinia jaboticaba (Vell.) Berg) ameliorate intestinal inflammation and associated endotoxemia in obesity. Food Research International, 141. doi:10.1016/j.foodres.2021.110139

Rokayya, S., Jia, F., Li, Y., Nie, X., Xu, J., Han, R., Yu, H., Amanullah, S., Almatrafi, M. M., & Helal, M. (2021). Application of nano-titanum dioxide coating on fresh Highbush blueberries shelf life stored under ambient temperature. LWT, 137(110422). doi:10.1016/j.lwt.2020.110422

Russo, M., Bonaccorsi, I. L., Arigò, A., Cacciola, F., De Gara, L., Dugo, P., & Mondello, L. (2021). Blood orange (Citrus sinensis) as a rich source of nutraceuticals: investigation of bioactive compounds in different parts of the fruit by HPLC-PDA/MS. Natural Product Research, 35(22), 4606-4610. doi:10.1080/14786419.2019.1696329

Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. In Food Research International, 76 (Part 3), 735-750. doi:10.1016/j.foodres.2015.07.047

Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals, 12(1), 1–18. doi:10.3390/ph12010011

Sandoval, V., Femenias, A., Martínez-Garza, Ú., Sanz-Lamora, H., Castagnini, J. M., Quifer-Rada, P., Lamuela-Raventós, R. M., Marrero, P. F., Haro, D., & Relat, J. (2019). Lyophilized maqui (Aristotelia chilensis) berry induces browning in the subcutaneous white adipose tissue and ameliorates the insulin resistance in high fat diet-induced obese mice. Antioxidants, 8(9). doi:10.3390/antiox8090360

Sandoval, V., Sanz-Lamora, H., Marrero, P. F., Relat, J., & Haro, D. (2021). Lyophilized maqui (Aristotelia chilensis) berry administration suppresses high-fat diet-induced liver lipogenesis through the induction of the nuclear corepressor smile. Antioxidants, 10(5). doi:10.3390/antiox10050637.

Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81(Suppl), 215S-217S. doi:10.1093/ajcn/81.1.215S

Schmeda-Hirschmann, G., Jiménez-Aspee, F., Theoduloz, C., & Ladio, A. (2019). Patagonian berries as native food and medicine. Journal of Ethnopharmacology, 241(April), 111979. doi:10.1016/j.jep.2019.111979

Sergent, T., Vanderstraeten, J., Winand, J., Beguin, P., & Schneider, Y. J. (2012). Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chemistry, 135(1), 68–73. doi:10.1016/j.foodchem.2012.04.074

Shahidi, F., & Yeo, J. D. (2018). Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences, 19(6), 1–16. doi:10.3390/ijms19061573

Sharifi-Rad, M., Kumar, N. V. A., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Fokou, P. V. T., Azzini, E., Peluso, I., Mishra, A. P., Nigam, M., El Rayess, Y., El Beyrouthy, M., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C. & Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, 1–21. doi:10.3389/fphys.2020.00694

Sies, H. (2020). Oxidative stress: Concept and some practical aspects. Antioxidants, 9(9), 1–6. doi:10.3390/antiox9090852

Silva, G. T., Fernandes, C. P., Hiane, P. A., Figueiredo, P. S., Inada, A. C., Filiú, W.F., Maldonade, I.R., Nunes, A.A., Oliveira, L.C.S., Caires, A.R.L., Michels, F., Candido, C.J., Cavalheiro, L.F., Asato, M.A., Donadon, J.R., Faria, B.B., Tatara, M.B., Croda, J.H.R., Pott, A., Nazário, C.R.D. & Guimarães, R.C.A. (2020). Caryocar brasiliense Cambess. Pulp Oil Supplementation Reduces Total Cholesterol, LDL-c, and Non-HDL-c in Animals. Molecules, 25(4530), 1–17. doi:10.3390/molecules25194530

Silveira, J. Q., Dourado, G. K. Z. S., & Cesar, T. B. (2015). Red-fleshed sweet orange juice improves the risk factors for metabolic syndrome. International Journal of Food Sciences and Nutrition, 66(7), 830–836. doi:10.3109/09637486.2015.1093610

Sirijan, M., Pipattanawong, N., Saeng-On, B., & Chaiprasart, P. (2020). Anthocyanin content, bioactive compounds and physico-chemical characteristics of potential new strawberry cultivars rich in-anthocyanins. Journal of Berry Research, 10, 397–410. doi:10.3233/JBR-190487

Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytotherapy Research, March, 1265–1286. doi:10.1002/ptr.5642

Sohrab, G., Ebrahimof, S., Sotoudeh, G., Neyestani, T. R., Angoorani, P., Hedayati, M., & Siasi, F. (2017). Effects of pomegranate juice consumption on oxidative stress in patients with type 2 diabetes: a single-blind, randomized clinical trial. International Journal of Food Sciences and Nutrition, 68(2), 249–255. doi:10.1080/09637486.2016.1229760.

Solverson, P. M., Rumpler, W. V., Leger, J. L., Redan, B. W., Ferruzzi, M. G., Baer, D. J., Castonguay, T. W., & Novotny, J. A. (2018). Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients, 10(8), 1–16. doi:10.3390/nu10081048

Soares, E., Soares, A. C., Trindade, P. L., Monteiro, E. B., Martins, F. F., Forgie, A. J., Inada, K. O. P., Bem, G. F., Resende, A., Perrone, D., Souza-Mello, V., Tomás-Barberán, F., Willing, B. P., Monteiro, M., & Daleprane, J. B. (2021). Jaboticaba (Myrciaria jaboticaba) powder consumption improves the metabolic profile and regulates gut microbiome composition in high-fat diet-fed mice. Biomedicine & Pharmacotherapy, 144, 112314. doi:10.1016/j.biopha.2021.112314

Song, H., Shen, X., Deng, R., Zhang, Y., & Zheng, X. (2021). Dietary anthocyanin-rich extract of açai protects from diet-induced obesity, liver steatosis, and insulin resistance with modulation of gut microbiota in mice. Nutrition, 86, 111176. doi:10.1016/j.nut.2021.111176

Song, H., Shen, X., Chu, Q., & Zheng, X. (2021). Pomegranate fruit pulp polyphenols reduce diet-induced obesity with modulation of gut microbiota in mice. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.11535

Stafussa, A. P., Maciel, G. M., Rampazzo, V., Bona, E., Makara, C. N., Demczuk Junior, B., & Haminiuk, C. W. I. (2018). Bioactive compounds of 44 traditional and exotic brazilian fruit pulps: Phenolic compounds and antioxidant activity. International Journal of Food Properties, 21(1), 106–118. doi:10.1080/10942912.2017.1409761

Stockton, A., Farhat, G., McDougall, G. J., & Al-Dujaili, E. A. S. (2017). Effect of pomegranate extract on blood pressure and anthropometry in adults: a double-blind placebo-controlled randomised clinical trial. Journal of Nutritional Science, 11, 4–11. doi:10.1017/jns.2017.36

Stote, K. S., Clevidence, B. A., Novotny, J. A., Henderson, T., Radecki, S. V., & Baer, D. J. (2012). Effect of cocoa and green tea on biomarkers of glucose regulation, oxidative stress, inflammation and hemostasis in obese adults at risk for insulin resistance. European Journal of Clinical Nutrition, 66(10), 1153–1159. doi:10.1038/ejcn.2012.101

Ströher, D. J., Escobar Piccoli, J. D. C., Güllich, A. A. D. C., Pilar, B. C., Coelho, R. P., Bruno, J. B., Faoro, D., & Manfredini, V. (2015). 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model. International Journal of Food Sciences and Nutrition, 66(5), 559–568. doi:10.3109/09637486.2015.1064870

Stull, A. J., Cash, K. C., Johnson, W. D., Champagne, C. M., & Cefalu, W. T. (2010). Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. Journal of Nutrition, 140(10), 1764–1768. doi:10.3945/jn.110.125336

Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., & Ye, X. (2013). Phytochemical Profile and Antioxidant Activity of Physiological Drop of Citrus Fruits. Journal of Food Science, 78(1), 37–42. doi:10.1111/j.1750-3841.2012.03002.x

Sung, J., Ho, C. T., & Wang, Y. (2018). Preventive mechanism of bioactive dietary foods on obesity-related inflammation and diseases. Food and Function, 9(12), 6081–6095. doi:10.1039/c8fo01561a

Taylor, E. B. (2021). The complex role of adipokines in obesity, inflammation, and autoimmunity. Clinical Science, 135(6), 731–752. doi:10.1042/CS20200895

Tomás-Barberán, F. (2003). Los polifenoles de los alimentos y la salud. ANS. Alimentación, Nutrición y Salud, 10(2), 41–53. https://digital.csic.es/handle/10261/18042

Tripoli, E., Guardia, M. La, Giammanco, S., Majo, D. Di, & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104(2), 466–479. doi:10.1016/j.foodchem.2006.11.054

Trindade, P. L., Soares, E. D. R., Inada, K. O. P., Martins, F. F., Rudnicki, M., Perrone, D., Monteiro, M., Souza-Mello, V., & Daleprane, J. B. (2021). Consumption of phenolic-rich jabuticaba (Myrciaria jaboticaba) powder ameliorates obesity-related disorders in mice. British Journal of Nutrition, 10, 1–9. doi:10.1017/S0007114521001136

Tsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 5(2). doi:10.3390/antiox5020013

Uckoo, R. M., Jayaprakasha, G. K., Balasubramaniam, V. M., & Patil, B. S. (2012). Grapefruit (Citrus paradisi Macfad) Phytochemicals Composition Is Modulated by Household Processing Techniques. Journal of Food Science, 77(9), 921–926. doi:10.1111/j.1750-3841.2012.02865.x

Udani, J. K., Singh, B. B., Singh, V. J., & Barrett, M. L. (2011). Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutrition Journal, 10(1), 1–7. doi:10.1186/1475-2891-10-45

Vale, A. F., Ferreira, H. H., Benetti, E. J., Rebelo, A. C. S., Figueiredo, A. C. R., Barbosa, E. C., & Simões, K. (2019). Antioxidant effect of the pequi oil (Caryocar brasiliense) on the hepatic tissue of rats trained by exhaustive swimming exercises. Brazilian Journal of Biology, 79(2), 257–262. doi:10.1590/1519-6984.180015

Vasconcelos, M. S., Mota, E. F., Gomes-Rochette, N. F., Nunes-Pinheiro, D. C. S., Nabavi, S. M., & Melo, D. F. (2019). Chapter 3.1 - Açai or Brazilian Berry (Euterpe oleracea). Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, 131-133.

Verruck, S., Prudencio, E. S., & Silveira, S. M. (2019). Compostos Bioativos Com Capacidade Antioxidante E Antimicrobiana Em Frutas. Revista Do Congresso Sul Brasileiro de Engenharia de Alimentos, 4(1), 111–124. doi:10.5965/24473650412018111

Vroegrijk, I. O. C. M., Diepen, J. A., Berg, S., Westbroek, I., Keizer, H., Gambelli, L., Hontecillas, R., Bassaganya-Riera, J., Zondag, G. C. M., Romijn, J. A., Havekes, L. M., & Voshol, P. J. (2011). Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food and Chemical Toxicology, 49(6), 1426–1430. doi:10.1016/j.fct.2011.03.037

Wang, M., Zhao, H., Wen, X., Ho, C. T., & Li, S. (2020). Citrus flavonoids and the intestinal barrier: Interactions and effects. Comprehensive Reviews in Food Science and Food Safety, 20(1), 225–251. doi:10.1111/1541-4337.12652

West, S. G., McIntyre, M. D., Piotrowski, M. J., Poupin, N., Miller, D. L., Preston, A. G., Wagner, P., Groves, L. F., & Skulas-Ray, A. C. (2014). Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. British Journal of Nutrition, 111(4), 653–661. doi:10.1017/S0007114513002912

WHO - World Health Organization. (2008). Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva, 8–11. December, 2008.

http://apps.who.int/iris/bitstream/handle/10665/44583/9789241501491_eng.pdf;jsessionid=4F7D5DFCC0FFE05FD1CF780D2058CCF1?sequence=1

WHO - World Health Organization. (2021). World health statistics 2021: monitoring health for the SDGs, sustainable development goals. https://apps.who.int/iris/handle/10665/342703

WHO - World Health Organization. (2021). Fact sheet nº 311 Obesity and overweight. [Fact Sheet] Geneva, 2012. Updated 09 June 2021. Retrieved from http://www.who.int/ mediacentre/factsheets/fs311/en/

WHO - World Health Organization. (2020). Healthy diet. [Fact Sheet] Updated 29 April 2020. from https://www.who.int/news-room/fact-sheets/detail/healthy-diet

Williams, D. J., Edwards, D., Hamernig, I., Jian, L., James, A. P., Johnson, S. K., & Tapsell, L. C. (2013). Vegetables containing phytochemicals with potential anti-obesity properties: A review. Food Research International, 52(1), 323–333. doi:10.1016/j.foodres.2013.03.015

Włodarski, A., Strycharz, J., Wróblewski, A., Kasznicki, J., Drzewoski, J., & Śliwińska, A. (2020). The role of MicroRNAs in metabolic syndrome-related oxidative stress. International Journal of Molecular Sciences, 21(18), 1–54. doi:10.3390/ijms21186902

Won, C. S., Oberlies, N. H., & Paine, M. F. (2012). Mechanisms underlying food-drug interactions: Inhibition of intestinal metabolism and transport. Pharmacology and Therapeutics, 136(2), 186–201. doi:10.1016/j.pharmthera.2012.08.001

Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423–447. doi:10.1016/S0963-9969(00)00068-5

Wong, M. C. S., Huang, J., Wang, J., Chan, P. S. F., Lok, V., Chen, X., Leung, C, Wang, H. H. X., Lao, X. Q. & Zheng, Z.-J. (2020). Global, regional and time-trend prevalence of central obesity: a systematic review and meta-analysis of 13.2 million subjects. European Journal of Epidemiology, 35, 673–683. doi:10.1007/s10654-020-00650-3

Wu, H., & Ballantyne, C. M. (2020). Metabolic Inflammation and Insulin Resistance in Obesity. Circulation Research, 126, 1549–1564. doi:10.1161/circresaha.119.315896

Wu, T., Tang, Q., Gao, Z., Yu, Z., Song, H., Zheng, X., & Chen, W. (2013). Blueberry and Mulberry Juice Prevent Obesity Development in C57BL/6 Mice. PLoS ONE, 8(10), 2–8. doi:10.1371/journal.pone.0077585

Wueest, S., & Konrad, D. (2020). The controversial role of IL-6 in adipose tissue on obesity-induced dysregulation of glucose metabolism. American Journal of Physiology - Endocrinology and Metabolism, 319(3), E607–E613. doi:10.1152/ajpendo.00306.2020

Yang, B., & Kortesniemi, M. (2015). Clinical evidence on potential health benefits of berries. Current Opinion in Food Science, 2, 36–42. doi: 10.1016/j.cofs.2015.01.002

Yen, G. C., Cheng, H. L., Lin, L. Y., Chen, S. C., & Hsu, C. L. (2020). The potential role of phenolic compounds on modulating gut microbiota in obesity. Journal of Food and Drug Analysis, 28(2), 195–205. doi:10.38212/2224-6614.1054

Yildiz, E., Guldas, M., Ellergezen, P., Acar, A. G., & Gurbuz, O. (2021). Obesity-associated pathways of anthocyanins. Food Science and Technology (Brazil), 41(June), 1–13. doi:10.1590/fst.39119

Zhang, M., Zhu, S., Yang, W., Huang, Q., & Ho, C. T. (2021). The biological fate and bioefficacy of Citrus flavonoids: Bioavailability, biotransformation, and delivery systems. Food and Function, 12(8), 3307–3323. doi:10.1039/d0fo03403g

Zorena, K., Jachimowicz-Duda, O., Ślęzak, D., Robakowska, M., & Mrugacz, M. (2020). Adipokines and obesity. Potential link to metabolic disorders and chronic complications. International Journal of Molecular Sciences, 21(10), 1-18. doi:10.3390/ijms21103570

Zorzi, M., Gai, F., Medana, C., Aigotti, R., Morello, S., & Peiretti, P. G. (2020). Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods, 9(623), 1–13. doi:10.3390/foods9050623

Zou, X., Yan, C., Shi, Y., Cao, K., Xu, J., Wang, X., Chen, C., Luo, C., Li, Y., Gao, J., Pang, W., Zhao, J., Zhao, F., Li, H., Zheng, A., Sun, W., Long, J., Szeto, I. M. Y., Zhao, Y., & Feng, Z. (2014). Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: The protective effects of pomegranate with its active component punicalagin. Antioxidants and Redox Signaling, 21(11), 1557–1570. doi:10.1089/ars.2013.5538

Downloads

Publicado

12/03/2022

Como Citar

MARTINEZ , R. M. .; ALMEIDA, C. de O. R. P. de .; LIMA , T. P. B.; FIGUEIREDO , M. S. .; TEODORO, A. J. Mecanismos da obesidade e importância dos compostos bioativos de frutas em sua regulação – uma revisão narrativa. Research, Society and Development, [S. l.], v. 11, n. 4, p. e11411427153, 2022. DOI: 10.33448/rsd-v11i4.27153. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27153. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde