Desenvolvimento animal, histologia hepatica e atividade antioxidante do músculo de zebrafish (Danio rerio) alimentado com aditivos naturais na dieta

Autores

DOI:

https://doi.org/10.33448/rsd-v11i4.27326

Palavras-chave:

ABTS; DPPH; Extratos naturais; Fitoquímicos; Produção animal.

Resumo

Este trabalho foi realizado para avaliar o crescimento animal, histologia hepática e efeitos antioxidantes em zebrafish alimentados com aditivos naturais em diferentes níveis. Os aditivos naturais foram compostos por extrato de Baccharis dracunculifolia, líquido da casca de castanha de caju (CNSL) e óleo essencial da folha do cravo da Índia (CLEO). Os grupos foram: CONT: dieta basal sem adição; CONB: adição de 50 g BHT/kg de ração; MIX1: adição de 50 g de aditivos naturais/kg de ração (60% B. dracunculifolia, 39% CNSL e 1% CLEO); MIX2: adição de 50 g de aditivos naturais/kg de ração (70% B. dracunculifolia, 29% CNSL e 1% CLEO); MIX3: adição de 50 g de aditivos naturais/kg de ração (90% B. dracunculifolia, 9% CNSL e 1% CLEO); e MIX4: adição de 50 g de aditivos naturais/kg de ração (99% B. dracunculifolia, 0,9% CNSL e 0,1% CLEO). O ganho médio diário foi menor para os peixes alimentados com a dieta MIX4. O efeito das dietas foi observado na histologia hepática (P < 0,001), que foi maior nos peixes alimentados com as dietas CONB e MIX4. A atividade antioxidante na dieta avaliada pelo ensaio ABTS foi maior (P < 0,05) para os tratamentos com aditivos naturais. Da mesma forma, a atividade antioxidante no músculo de zebrafish (P < 0,05). Assim, a inclusão de 5% de aditivos naturais na dieta composta por extrato de B. dracunculifolia, CNSL e CLEO melhorou a atividade antioxidante do músculo de zebrafish.

Referências

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2007.09.106

Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Sciences, 58(2), 173–181. https://doi.org/10.1016/j.aoas.2013.07.002

Bonin, E., Carvalho, V. M., Avila, V. D., Santos, N. C. A., Zanqueta, E. B., Lancheros, C. A.C., Previdelli, I. T. S., Nakamura, T. U., Filho, B. A. A., Prado, I.N. (2019). Baccharis dracunculifolia: Chemical constituents, cytotoxicity and antimicrobial activity. Lwt. 120 https://doi.org/10.1016/j.lwt.2019.108920

Campos, F.R., Bressan, J., Jasinski, V. C. G., Zuccolotto, T., Silva, L. E., & Cerqueira, L. B. (2016). Baccharis (Asteraceae): Chemical Constituents and Biological Activities. Chemistry & Biodiversity, 13(1), 1–17. https://doi.org/10.1002/cbdv.201400363

Capitani, C. D., Carvalho, A. C. L., Botelho, P. B., Carrapeiro, M. M., & Castro, I. A. (2009). Synergism on antioxidant activity between natural compounds optimized by response surface methodology. European Journal of Lipid Science and Technology. 111(11), 1100-1110. https://doi.org/10.1002/ejlt.200800258

Caro, M., Iturria, I., Santos, M. M., Pardo, M. A., Rainieri, S., Tueros, I., & Navarro, V. (2016). Zebrafish dives into food research: Effectiveness assessment of bioactive compounds. Food and Function. 7, no. 6 (2016): 2615-2623. https://doi.org/10.1039/c6fo00046k

Chakraborty, S. B., Horn, P., & Hancz, C. (2014). Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Reviews in Aquaculture. 6(1), 1-19. https://doi.org/10.1111/raq.12021

Craig, P. M., & Moon, T. W. (2011). Fasted zebrafish mimic genetic and physiological responses in mammals: A model for obesity and diabetes? Zebrafish. 8(3), 109-117. https://doi.org/10.1089/zeb.2011.0702

Driemeier, D., Cruz, C., & Loretti, A. (2000). Baccharis megapotamica var weirii poisoning in Brazilian cattle. Veterinary and Human Toxicology. 42(4), 220-221.

Fukuda, M., Ohkoshi, E., Makino, M., & Fujimoto, Y. (2006). Studies on the constituents of the leaves of Baccharis dracunculifolia (Asteraceae) and their cytotoxic activity. Chemical and Pharmaceutical Bulletin. 54(10), 1465-1468. https://doi.org/10.1248/cpb.54.1465

Jarvis, B. B., Wang, S., Cox, C., Rao, M. M., Philip, V., Varaschin, M. S., & Barros, C. S. (1996). Brazilian Baccharis toxins: Livestock poisoning and the isolation of macrocyclic trichothecene glucosides. Natural Toxins. 4(2), 58-71. https://doi.org/10.1002/19960402NT2

Khattak, F., Ronchi, A., Castelli, P., & Sparks, N. (2014). Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poultry Science. 93(1), 132-137. https://doi.org/10.3382/ps.2013-03387

Kirkwood, J. S., Lebold, K. M., Miranda, C. L., Wright, C. L., Miller, G. W., Tanguay, R. L., Barton, C. L., Traber, G. M., Stevens, J. F. (2012). Vitamin C deficiency activates the purine nucleotide cycle in zebrafish. Journal of Biological Chemistry. 287(6), 3833-3841. https://doi.org/10.1074/jbc.M111.316018

Lewandowski, V., Sary, C., Campos, E., Oliveira, C., Ribeiro, R., & Vargas, L. (2019). Homeopathy improves production and hatching probability of zebrafish eggs. Latin American Journal of Aquatic Research, 47(4), 595–601. https://doi.org/10.3856/vol47-issue4-fulltext-2

Li, W., Hydamaka, A. W., Lowry, L., & Beta, T. (2009). Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Central European Journal of Biology. 4(4), 499-506. https://doi.org/10.2478/s11535-009-0041-1

Makkar, H. P. S., Francis, G., & Becker, K. (2007). Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal. 1(9), 1371-1391. https://doi.org/10.1017/S1751731107000298

Maqsood, S., Benjakul, S., & Shahidi, F. (2013). Emerging Role of Phenolic Compounds as Natural Food Additives in Fish and Fish Products. Critical Reviews in Food Science and Nutrition. 53(2), 162-179. https://doi.org/10.1080/10408398.2010.518775

Martin, K. R. (2009). Polyphenols as dietary supplements: A double-edged sword. Nutrition and Dietary Supplements. 2, 1-12. https://doi.org/10.2147/nds.s6422

Menke, A. L., Spitsbergen, J. M., Wolterbeek, A. P. M., & Woutersen, R. A. (2011). Normal anatomy and histology of the adult zebrafish. Toxicologic Pathology. 39(5), 759-775. https://doi.org/10.1177/0192623311409597

Miranda, C. D., Godoy, F. A., & Lee, M. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the chilean salmon farms. Frontiers in Microbiology. 9, 1284. https://doi.org/10.3389/fmicb.2018.01284

Monteschio, J.O., Souza, K. A., Vital, A. C. P., Guerrero, A., Valero, M. V., Kempinski, E. M. B. C., Barcelos, V. C., Nascimento, K. F., Prado, I. N. (2017). Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers. Meat Science. 130, 50-57. https://doi.org/10.1016/j.meatsci.2017.04.002

Muhl, A., & Liebert, F. (2007). Growth and parameters of microflora in intestinal and faecal samples of piglets due to application of a phytogenic feed additive. Journal of Animal Physiology and Animal Nutrition. 91(9‐10), 411-418. https://doi.org/10.1111/j.1439-0396.2006.00668.x

Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat, Y. A., & Auras, R. (2017). Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control. 22(12), 2052-2058. https://doi.org/10.1016/j.foodcont.2016.09.018

Naiel, M. A. E., Ismael, N. E. M., Negm, S. S., Ayyat, M. S., & Al-Sagheer, A. A. (2020). Rosemary leaf powder–supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile Tilapia (Oreochromis niloticus). Aquaculture. 526, 735370. https://doi.org/10.1016/j.aquaculture.2020.735370

Raccach, M. (1984). the Antimicrobial Activity of Phenolic Antioxidants in Foods: a Review. Journal of Food Safety, 6(3), 141–170. https://doi.org/10.1111/j.1745-4565.1984.tb00479.x

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rodrigues, D. M., Souza, M. C., Arruda, C., Pereira, R. A. S., & Bastos, J. K. (2020). The Role of Baccharis dracunculifolia and its Chemical Profile on Green Propolis Production by Apis mellifera. Journal of Chemical Ecology. 46(2), 150-162. https://doi.org/10.1007/s10886-019-01141-w

Sangwan, N. S., Farooqi, A. H. A., Shabih, F., & Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant Growth Regulation. 34(1), 3-21. https://doi.org/10.1023/A:1013386921596

Santos, I. V. F., Duarte, J. L., Fernandes, C. P., Keita H., Amado, J. R. R., Moyado, J. A. V, Navarrete, A., Carvalho, J. C. T. (2016). Use of zebrafish (Danio rerio) in experimental models for biological assay with natural products. African Journal of Pharmacy and Pharmacology. 10(42), 883-891. https://doi.org/10.5897/ajpp2016.4662

Santurio, J. M., Santurio, D. F., Pozzatti, P., Moraes, C., Franchin, P. R., & Alves, S. H. (2007). Atividade antimicrobiana dos óleos essenciais de orégano, tomilho e canela frente a sorovares de Salmonella enterica de origem avícola. Ciencia Rural. 37(3), 803-808. http://dx.doi.org/10.1590/S0103-84782007000300031

Souza, K. A., Monteschio, J. O., Mottin, C., Ramos, T. R., Pinto, L. A. M., Eiras, C. E., Guerrero, A., Prado, I. N. (2019). Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedl. Livestock Science. 220, 190-195. https://doi.org/10.1016/j.livsci.2018.12.026

Stegelmeier, B. L., Sani, Y., & Pfister, J. A. (2009). Bacchavis pteronioides toxicity in livestock and hamsters. Journal of Veterinary Diagnostic Investigation. 21(2), 208-213. https://doi.org/10.1177/104063870902100205

Sullivan, C., & Kim, C. H. (2008). Zebrafish as a model for infectious disease and immune function. Fish and Shellfish Immunology. 25(4), 341-350. https://doi.org/10.1016/j.fsi.2008.05.005

Trevisan, M. T. S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., & Owen, R. W. (2006). Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food and Chemical Toxicology. 44(2), 188-197. https://doi.org/10.1016/j.fct.2005.06.012

Ulloa, P. E., Medrano, J. F., & Feijo, C. G. (2014). Zebrafish as animal model for aquaculture nutrition research. Frontiers in Genetics. 5, 313. https://doi.org/10.3389/fgene.2014.00313

Varaschin, M. S., & Alessi, A. C. (2003). Poisoning of mice by Baccharis coridifolia: An experimental model. Veterinary and Human Toxicology. 45(1), 42-44.

Veiga, R. S., De Mendonça, S., Mendes, P. B., Paulino, N., Mimica, M. J., Lagareiro Netto, A. A., Lira, I. S., López, B. G. C., Negrão V., Marcucci, M. C. (2017). Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. Journal of Applied Microbiology. 122(4), 911-920. https://doi.org/10.1111/jam.13400

Vilella, A. J., Severin, J., Vidal, A. U., Heng, L., Durbin, R., & Birney, E. (2008). EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Research, 19(2), 327–335. https://doi.org/10.1101/gr.073585.107

Vital, A. C. P., Guerrero, A., Monteschio, J. O., Valero, M. V., Carvalho, C. B., Abreu Filho, B. A., Madrona, G. S., Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS ONE. 11(8), e0160535. https://doi.org/10.1371/journal.pone.0160535

Zellmer, S., Heck, W. S., Godoy, P., Weng, H., Meyer, C., Lehmann, T., Sparna, T., Schormann, W., Hammad, S., Kreutz, C., Gebhardt, R. (2010). Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology. 52(6), 2127-2136. https://doi.org/10.1002/hep.23930.

Downloads

Publicado

22/03/2022

Como Citar

RAMOS, T. R. .; SOUZA, K. A.; LEWANDOWSKI , V.; PRADO, R. M. do .; ORNAGHI, M. G. .; VITAL, A. C. P.; ALVES, L. F. de S.; RIBEIRO, R. P. .; PRADO, I. N. Desenvolvimento animal, histologia hepatica e atividade antioxidante do músculo de zebrafish (Danio rerio) alimentado com aditivos naturais na dieta . Research, Society and Development, [S. l.], v. 11, n. 4, p. e41111427326, 2022. DOI: 10.33448/rsd-v11i4.27326. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27326. Acesso em: 27 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas