Avaliação de Desempenho e Calibração de Sensores de Umidade de Baixo Custo em Múltiplas Profundidades de Latossolos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i4.27420

Palavras-chave:

Função de calibração; Sensores eletromagnéticos; Sensor HFM2030; Teor de umidade do solo; Conteúdo volumétrico de água.

Resumo

O monitoramento da umidade do solo é um componente fundamental no manejo da irrigação e pode ser realizado com o auxílio de sensores eletromagnéticos de baixo custo. Este estudo teve como objetivo desenvolver equações de calibração para o sensor HFM2030 em diferentes profundidades (0-20; 20-40; 40-60; 60-80; 100 cm) de Latossolos e avaliar os níveis de precisão das equações de calibração utilizadas no monitoramento contínuo de umidade do solo. Os valores de referência do teor de umidade do solo foram medidos por um método gravimétrico padrão, convertidos em umidade volumétrica e, em seguida, comparados com as leituras do sensor para desenvolver equações de calibração. O ajuste da função de regressão foi avaliado com base no coeficiente de determinação (R2). Os resultados indicaram que as equações de calibração foram lineares em diferentes profundidades do solo. A calibração do sensor HFM2030 melhorou a estimativa do teor volumétrico de água em 31,21%, 23,46%, 24,93%, 31,93% e 41,18% nas camadas de 0-20, 20-40, 40-60, 60-80 e 80-100 cm, respectivamente. Aqui, fica demonstrado que a correta calibração do HFM2030 deve anteceder a instalação e uso desses sensores em campo. Os resultados deste estudo representam mais um passo para o desenvolvimento de critérios visando maior precisão no uso de sensores no manejo da irrigação. As equações de calibração desenvolvidas neste estudo podem ser aplicáveis e úteis para agricultores e pesquisadores que trabalham com sensores HFM2030 em condições de solo semelhantes em outras regiões do Brasil e no mundo.

Referências

Allen, R. G. A. (1986). Penman for all seasons. Journal of Irrigation and Drainage Engineering, v. 112, n. 4, p. 348-386.

Ankenbauer, K. J. & Loheide, S. P. (2017). The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrological Processes, 31(4), 891901.

Azizan, F. A., Zalani, F. M., Nagarajan, A., Aznan, A. A. & Ruslan, R. (2019). Analysis of spatial distribution of soil moisture content for different soil layers in mango greenhouse. In IOP Conference Series: Materials Science and Engineering, 557(1), p.012070. IOP Publishing.

Bello, Z.A., Tfwala, C.M. & Van Rensburg, L.D. (2019). Evaluation of newly developed capacitance probes for continuous soil water measurement. Geoderma, 345, 104113.

Bittelli, M. (2011). Measuring soil water content: A review. HortTechnology, 21(3), 293300.

Bogena, H.R., Huisman, J.A., Schilling, B., Weuthen, A. & Vereecken, H. (2017). Effective calibration of low-cost soil water content sensors. Sensors, 17(1), 208.

Camargo, A.P. & Sentelhas, P.C. (1997). Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no estado de São Paulo. Revista Brasileira de Agrometeorologia, Santa Maria, v.5, n.1, p.89-97.

Cardenas-Lailhacar, B. & Dukes, M.D. (2015). Effect of temperature and salinity on the precision and accuracy of landscape irrigation soil moisture sensor systems. Journal of Irrigation and Drainage Engineering, 141(7), 04014076.

Chen, B., Han, M.Y., Peng, K., Zhou, S.L., Shao, L., Wu, X.F. & Chen, G.Q. (2018). Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains. Science of the Total Environment, 613, 931943.

Dobriyal, P., Qureshi, A., Badola, R. & Hussain, S.A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458, 110117.

Evett, S.R., Schwartz, R.C., Casanova, J.J. & Heng, L.K. (2012). Soil water sensing for water balance, ET and WUE. Agricultural Water Management, 104, 19.

Falker. (2018). Manual do medidor eletrônico de umidade do solo HFM2030 HFM 2030. 43p.

Fares, A., Awal, R. & Bayabil, H.K. (2016). Soil water content sensor response to organic matter content under laboratory conditions. Sensors, 16(8), 1239.

Fares, A., Buss, P., Dalton, M., El‐Kadi, A.I. & Parsons, L.R. (2004). Dual field calibration of capacitance and neutron soil water sensors in a shrinking–swelling clay soil. Vadose Zone Journal, 3(4), 13901399.

Ferrarezi, R.S., Dove, S.K., Van Iersel, M.W. (2015). An automated system for monitoring soil moisture and controlling irrigation using low-cost open-source microcontrollers. HortTechnology, 25(1), 110118.

Gabriel, J.L., Lizaso, J.I. & Quemada, M. (2010). Laboratory versus field calibration of capacitance probes. Soil Science Society of America Journal, 74(2), 593601.

Gava, R., da Silva, E.E. & Baio, F. (2016). Electronic Moisture Sensor Calibration In Different Soil Textures. Revista Brasileira De Engenharia De Biossistemas, 10(2), 154–162.

Geesing, D., Bachmaier, M. & Schmidhalter, U. (2004). Field calibration of a capacitance soil water probe in heterogeneous fields. Soil Research, 42(3), 289-299.

Hajdu, I., Yule, I., Bretherton, M., Singh, R. & Hedley, C. (2019). Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils. Agricultural water management, 217, 332345.

Hanson, B., Orloff, S. & Peters, D. (2000). Monitoring soil moisture helps refine irrigation management. California Agriculture, 54(3), 3842.

Hedley, C. B., Yule, I. J. & Bradbury S. (2010). Analysis of potential benefits of precision irrigation for variable soils at five pastoral and arable production sites in New Zealand. In: 19th World Soil Congress, pp 16.

Kinzli, K. D., Manana, N. & Oad, R. (2012). Comparison of laboratory and field calibration of a soil-moisture capacitance probe for various soils. Journal of irrigation and drainage engineering, 138(4), 310321.

Kramer, P .J. & Boyer, J. S. (1995). Soil and water. In: Water Relations of Plants and Soils; Academic Press: San Diego, CA, USA, 84–114.

Lima, H. V. D., Silva, Á. P. D, Giarola, N. F. B. & Imhoff, S. (2014). Índice de qualidade física do solo de solos de endurecimento no litoral brasileiro. Revista Brasileira de Ciência do Solo, 38 (6), 1722-1730.

Lukanu G. & Savage M. J (2006). Calibration of a frequency-domain reflectometer for determining soil-water content in a clay loam soil. Water SA, 32, 37.

Moradkhani, H. (2008). Hydrologic remote sensing and land surface data assimilation. Sensors, 8(5), 2986-3004.

Muggler, C. C., Buurman, P. & Van Doesburg, J. D. (2007). Weathering trends and parent material characteristics of polygenetic Oxisols from Minas Gerais, Brazil: I. Mineralogy. Geoderma, 138(1-2), 39-48.

Nagahage, E. A. A. D., Nagahage, I. S. P. & Fujino, T. (2019). Calibration and validation of a low-cost capacitive moisture sensor to integrate the automated soil moisture monitoring system. Agriculture, 9(7), 141.

Ni-Meister, W. (2008). Recent advances on soil moisture data assimilation. Physical Geography, 29(1), 19-37.

North, G. B. & Nobel, P.S. (1991). Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceae). American Journal of Botany, 78(7), 906915.

Parvin, N. & Degré, A. (2016). Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Research, 54(1), 111119.

Peters R. T., Desta, K. G. & Nelson, L. (2013). Practical use of soil moisture sensors and their data for irrigation scheduling. Washington State University Extension Fact Sheet S083E. http://hdl.handle.net/2376/4389.

Polyakov, V., Fares, A. & Ryder, M.H. (2005). Calibration of a capacitance system for measuring water content of tropical soil. Vadose Zone Journal, 4(4), 1004-1010.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Seneviratne, S. I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I. & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Science Reviews, 99(34), 125161.

Sui, R. (2017). Irrigation scheduling using soil moisture sensors. Journal of Agricultural Science, 10(1), 111.

Van Genuchten, M. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.

Vaz, C. M., Jones, S., Meding M. & Tuller, M. (2013). Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone Journal, 12(2).

Vera, J., Conejero, W., Conesa, M. R. & Ruiz-Sánchez, M. C. (2019). Irrigation factor approach based on soil water content: a nectarine orchard case study. Water, 11(3), 589.

Wang, S., Fu, B. J., Gao, G. Y., Yao, X. L. & Zhou, J. (2012). Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrology and Earth System Sciences, 16(8), 28832892.

Wang, X.D. & Benson, C.H. (2004). Leak‐free pressure plate extractor for measuring the soil water characteristic curve. Geotechnical Testing Journal, 27(2), 163–172.

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J. & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995-9005.

Woodward, S. J. R., Barker, D. J. & Zyskowski, R. F. (2001). A practical model for predicting soil water deficit in New Zealand pastures. New Zealand Journal of Agricultural Research, 44(1), 91109.

Zazueta, F. S. & Xin, J. (1994). Soil Moisture Sensors; Florida Cooperative Extension Service, Institute of Food and Agricultural Science; University of Florida: Gainesville, FL, USA.

Downloads

Publicado

20/03/2022

Como Citar

PEREIRA, E. D.; CASTRO FILHO, M. N. de .; BUENO, D. A. S. .; CABALLERO, R. I. C. .; CHAGAS, R. R. .; GOMES, R. S. .; SILVA, D. J. H. da . Avaliação de Desempenho e Calibração de Sensores de Umidade de Baixo Custo em Múltiplas Profundidades de Latossolos. Research, Society and Development, [S. l.], v. 11, n. 4, p. e35211427420, 2022. DOI: 10.33448/rsd-v11i4.27420. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27420. Acesso em: 15 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas