Rotas Tecnológicas de High Analytics Information: uma análise da rede de patentes
DOI:
https://doi.org/10.33448/rsd-v11i4.27569Palavras-chave:
Tecnologias de informação; Rotas tecnológicas; Análise de redes sociais; Análise de patentes; High analytics information.Resumo
O conhecimento intensivo contribui significativamente para o desenvolvimento tecnológico. Este artigo tem como objetivo explorar rotas tecnológicas (TR) em tecnologias de informação de alta análise (HAI) para fins de previsão tecnológica por meio de análise de redes sociais (SNA) em um banco de dados de patentes de 2001 a 2020. Aplicando o algoritmo de contagem de links de caminho de busca (SPLC), este estudo fornece cinco TR diferentes em vários setores de negócios. Este estudo auxilia os tomadores de decisão a encontrar núcleos adicionais de tecnologias para suas estratégias de inovação e auxilia os pesquisadores na identificação de tecnologias de HAI que ainda possam surgir em diferentes indústrias, apoiando decisões estratégicas de P&D sobre como priorizar investimentos, identificar parcerias para inovar e colaborar em políticas públicas baseadas na promoção desenvolvimento de novas tecnologias HAI.
Referências
Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3–13. https://doi.org/10.1016/j.wpi.2013.12.006
Arthur, W. B. (2007). The structure of invention. Research Policy, 36(2), 274–287. https://doi.org/10.1016/j.respol.2006.11.005
Barthélemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B - Condensed Matter, 38(2), 163–168. https://doi.org/10.1140/epjb/e2004-00111-4
Bhatt, V., Sashikala, P., & Chakraborty, S. (2019). The Impact of Information Technology and Analytics on the Performance of a Hospital: Scale Development in Indian Context. International Journal of Recent Technology and Engineering, 8(3), 2861–2869. https://doi.org/10.35940/ijrte.C5229.098319
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008
Breschi, S., Lissoni, F., & Malerba, F. (2003). Knowledge-relatedness in firm technological diversification. Research Policy, 32(1), 69–87. https://doi.org/10.1016/S0048-7333(02)00004-5
Carvalho, F., Silva, F. T. F., Szklo, A., & Portugal‐Pereira, J. (2019). Potential for biojet production from different biomass feedstocks and consolidated technological routes: A georeferencing and spatial analysis in Brazil. Biofuels, Bioproducts and Biorefining, 13(6), 1454–1475. https://doi.org/10.1002/bbb.2041
Chang, K.-C., Chen, D.-Z., & Huang, M.-H. (2012). The relationships between the patent performance and corporation performance. Journal of Informetrics, 6(1), 131–139. https://doi.org/10.1016/j.joi.2011.09.001
Chartoumpekis, D. V., Fu, C.-Y., Ziros, P. G., & Sykiotis, G. P. (2020). Patent Review (2017–2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants, 9(11), 1138. https://doi.org/10.3390/antiox9111138
de Faria, P., Lima, F., & Santos, R. (2010). Cooperation in innovation activities: The importance of partners. Research Policy, 39(8), 1082–1092. https://doi.org/10.1016/j.respol.2010.05.003
de Paulo, A. F., & Porto, G. S. (2017). Solar energy technologies and open innovation: A study based on bibliometric and social network analysis. Energy Policy, 108, 228–238. https://doi.org/10.1016/j.enpol.2017.06.007
de Paulo, A. F., & Porto, G. S. (2018). Evolution of collaborative networks of solar energy applied technologies. Journal of Cleaner Production, 204, 310–320. https://doi.org/10.1016/j.jclepro.2018.08.344
Demertzis, K., Tsiknas, K., Takezis, D., Skianis, C., & Iliadis, L. (2021). Darknet Traffic Big-Data Analysis and Network Management for Real-Time Automating of the Malicious Intent Detection Process by a Weight Agnostic Neural Networks Framework. Electronics, 10(7), 781. https://doi.org/10.3390/electronics10070781
Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. Research Policy, 29(2), 109–123. https://doi.org/10.1016/S0048-7333(99)00055-4
Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311–336. https://doi.org/10.1080/10438590801969073
García-Fernández, J., Gálvez-Ruiz, P., Bohórquez, M. R., Grimaldi-Puyana, M., & Cepeda-Carrión, I. (2020). The Relationship between Technological Capabilities and Organizational Impact: Direct and Indirect Routes for Employed and Self-Employed Personal Fitness Trainers. Sustainability, 12(24), 10383. https://doi.org/10.3390/su122410383
García-Sánchez, E., García-Morales, V., & Martín-Rojas, R. (2018). Influence of Technological Assets on Organizational Performance through Absorptive Capacity, Organizational Innovation, and Internal Labor Flexibility. Sustainability, 10(3), 770. https://doi.org/10.3390/su10030770
Hanneman, R. A., & Riddle, M. (2005). Introduction to Social Network Methods. University of California. https://books.google.com.br/books?id=wAHaygAACAAJ
Hesse-Biber, S. N. (Org.). (2011). The handbook of emergent technologies in social research. Oxford University Press.
Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63. https://doi.org/10.1016/0378-8733(89)90017-8
Huo, M., & Zhang, D. (2012). Lessons from photovoltaic policies in China for future development. Energy Policy, 51, 38–45. https://doi.org/10.1016/j.enpol.2011.12.063
Huynh, T. T., Nguyen, T. D., & Tan, H. (2019). A Decentralized Solution for Web Hosting. 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), 82–87. https://doi.org/10.1109/NICS48868.2019.9023837
Inaba, T., & Squicciarini, M. (2017). ICT: A new taxonomy based on the international patent classification (OECD Science, Technology and Industry Working Papers No 2017/01; OECD Science, Technology and Industry Working Papers, Vol. 2017/01). https://doi.org/10.1787/ab16c396-en
Janavi, E., & Emami, M. (2020). A co-citation study of information security patents in the USPTO database. Library Hi Tech, ahead-of-print(ahead-of-print). https://doi.org/10.1108/LHT-05-2020-0111
Jawad, N., Salih, M., Ali, K., Meunier, B., Zhang, Y., Zhang, X., Zetik, R., Zarakovitis, C., Koumaras, H., Kourtis, M.-A., Shi, L., Mazurczyk, W., & Cosmas, J. (2019). Smart Television Services Using NFV/SDN Network Management. IEEE Transactions on Broadcasting, 65(2), 404–413. https://doi.org/10.1109/TBC.2019.2898159
Jeon, J., & Suh, Y. (2019). Multiple patent network analysis for identifying safety technology convergence. Data Technologies and Applications, 53(3), 269–285. https://doi.org/10.1108/DTA-09-2018-0077
Kim, C. (2017). A systematic approach to identify core service technologies. Technology Analysis & Strategic Management, 29(1), 68–83. https://doi.org/10.1080/09537325.2016.1197898
Kim, D., Lee, H., & Kwak, J. (2017). Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network. Research Policy, 46(7), 1234–1254. https://doi.org/10.1016/j.respol.2017.05.008
Kim, L., & Ju, J. (2019). Can media forecast technological progress? A text-mining approach to the on-line newspaper and blog’s representation of prospective industrial technologies. Information Processing & Management, 56(4), 1506–1525. https://doi.org/10.1016/j.ipm.2018.10.017
Kuan, C.-H., Huang, M.-H., & Chen, D.-Z. (2013). Cross-field evaluation of publications of research institutes using their contributions to the fields’ MVPs determined by h-index. Journal of Informetrics, 7(2), 455–468. https://doi.org/10.1016/j.joi.2013.01.008
Kumar, V., Lai, K.-K., Chang, Y.-H., Bhatt, P. C., & Su, F.-P. (2021). A structural analysis approach to identify technology innovation and evolution path: A case of m-payment technology ecosystem. Journal of Knowledge Management, 25(2), 477–499. https://doi.org/10.1108/JKM-01-2020-0080
Kumar, V., Lai, K.-K., Chang, Y.-H., & Lin, C.-Y. (2018). Mapping Technological Trajectories for Energy Storage Device through Patent Citation Network. 2018 9th International Conference on Awareness Science and Technology (iCAST), 56–61. https://doi.org/10.1109/ICAwST.2018.8517199
Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., Liu, R.-S., Zhang, J., & Zhao, Y.-H. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics, 96(2), 427–441. https://doi.org/10.1007/s11192-012-0944-x
Linares, I. M. P., De Paulo, A. F., & Geciane, G. S. (2019). Patent-based network analysis to understand technological innovation pathways and trends. Technology in Society, 59(101134), 1010–1016. https://edisciplinas.usp.br/pluginfile.php/4980605/mod_resource/content/1/Linares%20et%20al%202019.pdf
Luqueze, M. A. O. (2018). A inovação aberta nas empresas do Índice NASDAQ-100: Um estudo das redes de cooperação formadas a partir das patentes [Doutorado em Administração de Organizações, Universidade de São Paulo]. https://doi.org/10.11606/T.96.2018.tde-25012018-101832
Mao, H., Liu, S., Zhang, J., & Deng, Z. (2016). Information technology resource, knowledge management capability, and competitive advantage: The moderating role of resource commitment. International Journal of Information Management, 36(6), 1062–1074. https://doi.org/10.1016/j.ijinfomgt.2016.07.001
Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press. Oxford, UK.
Paulo, A. F. de. (2019). Cooperação e Rotas Tecnológicas para o desenvolvimento de tecnologias sobre energia solar fotovoltaica: Uma análise baseada em patentes [Doutorado em Administração de Organizações, Universidade de São Paulo]. https://doi.org/10.11606/T.96.2019.tde-25062019-095212
Pereira, C. G., Picanco-Castro, V., Covas, D. T., & Porto, G. S. (2018). Patent mining and landscaping of emerging recombinant factor VIII through network analysis. Nature Biotechnology, 36(7), 585–590. https://doi.org/10.1038/nbt.4178
Pessôa, L. C., Deamici, K. M., Pontes, L. A. M., Druzian, J. I., & Assis, D. de J. (2021). Technological prospection of microalgae-based biorefinery approach for effluent treatment. Algal Research, 60, 102504. https://doi.org/10.1016/j.algal.2021.102504
Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance. Information Systems Frontiers, 20(2), 209–222. https://doi.org/10.1007/s10796-016-9720-4
Porto, G. S., Kannebley, S., Baroni, J., & Romano, A. (2012). Rotas Tecnológicas e Sistemas de Inovação (Relatório Final), Economia de Baixo Carbono: Avaliação de Impactos de Restrições e Perspectivas Tecnológicas.
Ritter, T., & Gemünden, H. G. (2003). Network competence. Journal of Business Research, 56(9), 745–755. https://doi.org/10.1016/S0148-2963(01)00259-4
Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843. https://doi.org/10.1016/j.respol.2015.06.006
Seddon, J. J. J. M., & Currie, W. L. (2017). A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70, 300–307. https://doi.org/10.1016/j.jbusres.2016.08.003
Si, S., & Chen, H. (2020). A literature review of disruptive innovation: What it is, how it works and where it goes. Journal of Engineering and Technology Management - JET-M, 56(November 2019), 101568. https://doi.org/10.1016/j.jengtecman.2020.101568
Smojver, V., Štorga, M., & Zovak, G. (2021). Exploring knowledge flow within a technology domain by conducting a dynamic analysis of a patent co-citation network. Journal of Knowledge Management, 25(2), 433–453. https://doi.org/10.1108/JKM-01-2020-0079
Suppa, P., & Zimeo, E. (2015). A Clustered Approach for Fast Computation of Betweenness Centrality in Social Networks. 2015 IEEE International Congress on Big Data, 47–54. https://doi.org/10.1109/BigDataCongress.2015.17
Verspagen, B. (2007). Mapping Tehcnological Trajectories as patent citation networks: A study on the history of fuell cell research. Advances in Complex Systems, 10(01), 93–115. https://doi.org/10.1142/S0219525907000945
Wang, B., Liu, Y., Zhou, Y., & Wen, Z. (2018). Emerging nanogenerator technology in China: A review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods. Nano Energy, 46, 322–330. https://doi.org/10.1016/j.nanoen.2018.02.020
Wang, Y., Su, X., Wang, H., & Zou, R. (2019). Intellectual capital and technological dynamic capability: Evidence from Chinese enterprises. Journal of Intellectual Capital, 20(4), 453–471. https://doi.org/10.1108/JIC-06-2018-0096
Wilden, R., & Gudergan, S. P. (2015). The impact of dynamic capabilities on operational marketing and technological capabilities: Investigating the role of environmental turbulence. Journal of the Academy of Marketing Science, 43(2), 181–199. https://doi.org/10.1007/s11747-014-0380-y
Xu, G., Wu, Y., Minshall, T., & Zhou, Y. (2018). Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China. Technological Forecasting and Social Change, 136, 208–221. https://doi.org/10.1016/j.techfore.2017.06.030
Xue, L., Huang, L., Li, X., & Zhou, Y. (2016). Roadmapping for industrial emergence and innovation gaps to catch-up: A patent-based analysis of OLED industry in China. International Journal of Technology Management, 72(1/2/3), 105. https://doi.org/10.1504/IJTM.2016.10001552
You, D., & Park, H. (2018). Developmental Trajectories in Electrical Steel Technology Using Patent Information. Sustainability, 10(8), 2728. https://doi.org/10.3390/su10082728
Zarrabeitia, E., Bildosola, I., Río Belver, R. M., Alvarez, I., & Cilleruelo-Carrasco, E. (2019). Laser Additive Manufacturing: A Patent Overview. In Á. Ortiz, C. Andrés Romano, R. Poler, & J.-P. García-Sabater (Orgs.), Engineering Digital Transformation (p. 183–191). Springer International Publishing. https://doi.org/10.1007/978-3-319-96005-0_23
Zhang, M. (2010). Social Network Analysis: History, Concepts, and Research. In B. Furht (Org.), Handbook of Social Network Technologies and Applications (p. 3–21). Springer US. https://doi.org/10.1007/978-1-4419-7142-5_1
Zhao, Z.-Y., Chen, Y.-L., & Chang, R.-D. (2016). How to stimulate renewable energy power generation effectively? – China’s incentive approaches and lessons. Renewable Energy, 92, 147–156. https://doi.org/10.1016/j.renene.2016.02.001
Zhou, Y., Dong, F., Kong, D., & Liu, Y. (2019). Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies. Technological Forecasting and Social Change, 144, 205–220. https://doi.org/10.1016/j.techfore.2019.03.014
Zhou, Y., Minshall, T., & Hampden-Turner, C. (2010). Building Innovation Capabilities: An Inquiry into the dynamic growth process of university spinouts in China. International Journal of Innovation and Technology Management, 07(03), 273–302. https://doi.org/10.1142/S0219877010002082
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Angélica Pigola; Priscila Rezende da Costa; Luísa Margarida Cagica Carvalho ; Geciane Silveira Porto; Alex Fabianne de Paulo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.