Efeito de diferentes regimes de fertilização do solo nas propriedades químicas do solo e na produtividade de grãos de milho em trópico úmido
DOI:
https://doi.org/10.33448/rsd-v11i5.27635Palavras-chave:
Manejo verde; Gliricidia; Análise de components principais; Produtividade do milho.Resumo
Nutrientes contidos no solo desempenham papel fundamental no desenvolvimento das plantas. Então, hipotetizamos que diferentes regimes de fertilização do solo modificam atributos químicos do solo e produtividade de grãos de milho. Este estudo objetivou avaliar atributos químicos do solo em diferentes regimes de fertilização e sua relação com a produtividade de grãos de milho. O experimento foi realizado no estado do Maranhão, Brasil. A área foi dividida em 32 parcelas de 4x10m com sete tratamentos e testemunha, com quatro repetições (R) em delineamento de blocos casualizados. Foram realizados os seguintes tratamentos: Gliricidia sepium – gliricídia (G), potássio (K), ácido húmico (HA), ácido húmico+potássio (HA+K), potássio+gliricídia (K+G), ácido húmico+gliricídia (HA +G), ácido húmico+potássio+gliricídia (HA+K+G) e solo descoberto (US). Cada parcela foi cultivada com milho (Zea mays L.) e a produtividade de grãos foi estimada. Amostras de solo foram coletadas de cada parcela nas profundidades 0–5 cm, 5–10 cm e 10–20 cm. Acidez potencial, pH, carbono orgânico do solo (COS), K+ trocável, Ca2+ e Mg2+, P disponível, capacidade de troca catiônica (CEC), soma de cátions base (SBC) e saturação por bases (BS) foram determinadas. ANOVA one-way com pós-teste de Duncan e análise de componentes principais (PCA) foram utilizadas. K+, Ca2+ e Mg2+ trocáveis, pH e CEC foram associados à produtividade de grãos de milho na camada superior do solo, especialmente em parcelas com gliricídia. Esta pesquisa confirma a hipótese de que diferentes regimes de fertilização do solo modificam os atributos químicos do solo e a produtividade de grãos de milho.
Referências
Abreu Jr., C. H., Muraoka, T. & Lavorante, A. F. (2003). Relationship between acidity and chemical properties of Brazilian soils. Sci. Agric., 60 (2), 337–343. http://dx.doi.org/10.1590/S0103-90162003000200019.
Afolayan, E. T. & Oyetunji, J. O. (2018). Influence of Arbuscular Mycorrhizal Fungi, Green Manure of Leucaena leucocephala and Gliricidia sepium on the Yield of White Yam (Dioscorea rotundata) and Soil Bioremediation in the Abandoned Quarry. Agric. Ext. J., 2 (1), 51–54. https://pdfs.semanticscholar.org/c22c/8ec04bb8f0c1ee7e9d224396556b6c381c0d.pdf.
Allaway, W. H. (1957). pH, soil acidity and plant growth. In Soil The Yearbook of Agriculture, 67–71 (Ed. A. Stefferud). Washington: USDA. https://naldc.nal.usda.gov/download/IND43894850/PDF.
Arif, M., Ali, K., Jan, M. T., Shah, Z., Jones, D. L. & Quilliam, R. S. (2016). Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crop Res., 195, 28–35. https://doi.org/10.1016/j.fcr.2016.05.011.
Awodun, M. A., Odogiyan, A. & Ojeniyi, S. O. (2007). Effect of gliricidia pruning on soil and plant nutrient status and yield of cowpea. Int. J. Agric. Res., 2 (4), 402–405. https://doi.org/10.3923/ijar.2007.402.405.
Brady, N. C. & Weil, R. R. (2008). The Nature and Properties of Soils, Pearson Education: New Jersey.
Bulluck III, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. (2002). Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol., 19, 147–160. https://doi.org/10.1016/S0929-1393(01)00187-1.
Cakmak, I. (2002). Plant and Soil, 247(1), 3–24. doi: 10.1023/A:1021194511492.
Carvalho, A. M., Marchão, R. L., Souza, K. W. & Bustamante, M. M. C. (2014). Soil fertility status, carbon and nitrogen stocks under cover crops and tillage regimes. Rev. Ciênc. Agron., 45, 5, 914–921. http://dx.doi.org/10.1590/S1806-66902014000500007.
Comte, I., Davidson, R. Lucotte, M., Carvalho, C. J. R. de, Oliveira, F. A., Silva, B. P. & Rousseau, G. X. (2012). Physicochemical properties of soils in the Brazilian Amazon following fire-free land preparation and slash-and-burn practices. Agr. Ecosyst. Environ., 156, 108–115. https://doi.org/10.1016/j.agee.2012.05.004.
Cronk, J. K. & Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. Boca Raton: Lewis. doi: 10.1201/9781420032925.
Crusciol, C. A. C., Soratto, R. P., Borghi, E. & Matheus, G. P. (2010). Benefits of Integrating Crops and Tropical Pastures as Systems of Production. Better Crops, 94, 14–16. http://www.ipni.net/publication/bettercrops.nsf/0/C9BCFC49A7405CB085257980006E46AB/$FILE/Better%20Crops%202010-2%20p14-16.pdf.
Davenport, J. R., DeMoranville, C. J., Hart, J., Kumidini, S., Patten, K., Poole, A. & Roper, T. R. (2003). Spatial and temporal variability of cranberry soil pH. Acta Hortic., 626, 31 5–327. http://dx.doi.org/10.17660/ActaHortic.2003.626.44.
Delarmelinda, E. A., Sampaio, F. A. R., Dias, J. R. M., Tavella, L. B. & Silva, J. S. (2010). Green manure and changes on chemical characteristics of a soil in the Ji-Paraná-RO region. Acta Amaz., 40 (3), 625–628. http://dx.doi.org/10.1590/S0044-59672010000300024.
Ehrenfeld, J. G., Ravit, B. & Elgersma, K. (2005). Feedback in the plant-soil system. Annu. Rev. Environ. Resour., 30, 75–115. http://dx.doi.org/10.1146/annurev.energy.30.050504.144212.
Ehsanullah, Tariq, A., Randhawa, M. A., Anjum, S. A., Nadeem, M., Naeem, M. (2015). Exploring the Role of Zinc in Maize (Zea Mays L.) through Soil and Foliar Application. Universal Journal of Agricultural Research, 3, 3, 69–75. doi: http://10.13189/ujar.2015.030301
Głąb, T. & Gondek, K. The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma, 226–227, 204–212. doi: https://doi.org/10.1016/j.geoderma.2014.02.021.
Harada, Y. & Inoko, A. (1975). Cation-exchange properties of soil organic matter. Soil Sci. Plant Nutr., 21 (4), 361–369. http://dx.doi.org/10.1080/00380768.1975.10432651.
Kamara, A. Y., Akobundu, I. O., Sanginga, N. & Jutzi, S. C. (2000). Effect of mulch from selected multipurpose trees (MPTs) on growth, nitrogen nutrition and yield of maize (Zea mays L.). J. Agron. Crop. Sci., 184, 73–80. http://dx.doi.org/10.1046/j.1439-037x.2000.00359.x
Kang, B.T. (1981). Nutrient requirement and fertilizer use for maize, in Agronomy training manual for agro service agronomist, 405–416 (Ed. Pandey, S. J.). Lagos: NAFPP/IITA.
Kaur, K., Kapoor, K. K. & Gupta, A. P. (2005). Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. J. Plant Nutr. Soil Sci., 168, 117–122. https://doi.org/10.1002/jpln.200421442.
Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 1–8.
Li, M., Zhang, X., Pang, G. & Han, F. (2013). The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau. Catena, 101, 11–16. https://doi.org/10.1016/j.catena.2012.09.012.
Li, Y., Li, Z., Cui, S., Chang, S. X., Jia, C. & Zhang, Q. (2019). A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agr. Forest Meteorol., 268, 136–145. https://doi.org/10.1016/j.agrformet.2019.01.018.
Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., Liu, Q., Liu, S. & Fan, T. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158, 173–180. https://doi.org/10.1016/j.geoderma.2010.04.029.
Lupwayi, N. Z. & Haque, I. (1998). Mineralization of N, P, K, Ca and Mg from Sesbania and Leucaena leaves varying in chemical composition. Soil Biol. Biochem., 30 (3), 337–343. https://doi.org/10.1016/S0038-0717(97)00132-6.
Maharjan, M., Maranguit, D. & Kuzyakov, Y. (2018). Phosphorus fractions in subtropical soils depending on land use. Eur. J. Soil Biol., 87, 17–24. https://doi.org/10.1016/j.ejsobi.2018.04.002.
Martins, S. J., Medeiros, F. H. V., Souza, R. M., Faria, A. F., Cancellier, E. L., Silveira, H. R. O., Rezende, M. L. V. & Guilherme, L. R. G. (2015). Common bean growth and health promoted by rhizobacteria and the contribution of magnesium to the observed responses. Appl. Soil Ecol., 87, 49–55. https://doi.org/10.1016/j.apsoil.2014.11.005.
Milić, S., Ninkov, J., Zeremski, T., Latković, D., Šeremešić, S., Radovanović, V. & Žarković, B. (2019). Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma, 339, 9–19. https://doi.org/10.1016/j.geoderma.2018.12.017.
Morar, F. & Peterlicean, A. (2014). Studies and research regarding the main macronutrients content of some Mureș county soils. Procedia Technol., 12, 609–614. https://doi.org/10.1016/j.protcy.2013.12.537.
Morgan, J. B. & Connolly, E. L. (2013). Plant-Soil Interactions: Nutrient Uptake. Nature Educ. Knowl., 4 (8), 2. https://www.nature.com/scitable/knowledge/library/plant-soil-interactions-nutrient-uptake-105289112.
Moura, E. G., Oliveira, A. K. C., Coutinho, G., Pinheiro, K. M. & Aguiar, A. C. F. (2012). Management of a cohesive tropical soil to enhance rootability and increase the efficiency of nitrogen and potassium use. Soil Use Manag., 28, 370–377. https://doi.org/10.1111/j.1475-2743.2012.00424.x.
Mweta, D. E., Akinnifesi, F. K., Saka, J. D. K., Makumba, W. & Chokotho, N. (2007). Green manure from prunings and mineral fertilizer affect phosphorus adsorption and uptake by maize crop in a gliricidia-maize intercropping. Sci. Res. Essays, 2 (10), 446–453. http://www.academicjournals.org/SRE.
Nascente, A. S., Stone, L. F. & Crusciol, C. A. C. (2015). Soil chemical properties affected by cover crops under no-tillage system. Rev. Ceres, 62 (4), 401–409, http://dx.doi.org/10.1590/0034-737X201562040010.
Nascimento, J. T., Silva, I. F., Santiago, R. D. & Silva Neto, L. F. (2003). Efeito de leguminosas nas características químicas e matéria orgânica de um solo degradado. Rev. Bras. Eng. Agr. Amb., 7 (3), 457–462. http://dx.doi.org/10.1590/S1415-43662003000300008.
Ordóñez-Fernández, R., Torres, M. A. R-R., Román-Vázquez, J., González-Fernández, P. & Carbonell-Bojollo, R. (2015). Macronutrients released during the decomposition of pruning residues used as plant cover and their effect on soil fertility. J. Agric. Sci., 153, 615–630. doi:10.1017/S0021859614000458.
Parnas, H. (1975). Model for decomposition of organic material by microorganisms. Soil Biol. Biochem., 7, 161–169. https://doi.org/10.1016/0038-0717(75)90014-0.
Qu, B., Liu, Y., Sun, X., Li, S., Wang, X. & Xiong, K. (2019). Effect of various mulches on soil physico-Chemical properties and tree growth (Sophora japonica) in urban tree pits. Plos One, 14 (2), 01–12. doi: http://dx-doi.ez364.periodicos.capes.gov.br/10.1371/journal.pone.0210777.
Raij, B. V., Andrade, J. C., Cantarella, H. & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solo tropicais. Campinas: Instituto Agronômico.
Rao, M. R. & Mathuva, M. N. (2000). Legumes for improving maize yields and income in semi-arid Kenya. Agric. Ecosyst Environ., 78, 123–137. https://doi.org/10.1016/S0167-8809(99)00125-5.
Sakala, W. & Mhang, W. (2003). Green manure and food legumes research to increase soil fertility and maize yields in Waddington Malawi: a review. In Grain Legumes and Green Manures for Soil Fertility in Southern Africa: Taking Stock of Progress. Soil Fertility Management and Policy Network for Maize-Based Cropping Systems in Southern Africa, 95–101 (Ed. Stephen, R.). Zimbabwe. https://repository.cimmyt.org/bitstream/handle/10883/1377/78738.pdf?sequence=1&isAllowed=y.
Sakala, G. M., Rowell, D. L. & Pilbeam, C. J. (2004). Acid–base reactions between an acidic soil and plant residues. Geoderma, 123, 219–232. https://doi.org/10.1016/j.geoderma.2004.02.002.
Salvagiotti, F., Prystupa, P., Ferraris, G., Couretot, L., Magnano, L., Dignani, D.& BGutiérrez-Boemoem, F. H. G. (2017). N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. Field Crops Res., 203, 128–138. https://doi.org/10.1016/j.fcr.2016.12.019.
Saruhan, V., Kuvuran, A. & Babat, S. (2011). The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L.). Sci. Res. Essays, 6 (3), 663–669. http://www.academicjournals.org/SRE.
Srivastava, R. K., Panda, R. K., Chakraborty, A. & Halder, D. (2018). Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res., 221, 339–349. https://doi.org/10.1016/j.fcr.2017.06.019.
Soil Survey Staff. (2010). Keys to Soil Taxonomy. 11ed. Washington: USDA-Natural Resources Conservation Service.
Statsoft Inc. (2004). Statistica (version 7). Tusla, USA.
Visser, S. A. (1985). Physiological action of humic substances on microbial cells. Soil Biol. Biochem., 17 (4), 457–462. https://doi.org/10.1016/0038-0717(85)90009-4.
Wang, M. C. & Yang, C. H. (2003). Type of fertilizer applied to a paddy–upland rotation affects selected soil quality attributes. Geoderma, 114, 93–108. https://doi.org/10.1016/S0016-7061(02)00356-7.
Zhang, Qi., Zhou, W., Liang, G., Sun, J., Wang, X. & He, P. (2015). Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl. Soil Ecol., 94, 59–71. https://doi.org/10.1016/j.apsoil.2015.05.005.
Zhang, J., Bei, S., Li, B., Zhang, J., Christie, P. & Li., X. (2019a). Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl. Soil Ecol., 136, 67–79. https://doi.org/10.1016/j.apsoil.2018.12.017.
Zhong, Z., Huang, X., Feng, D., Xing, S. & Weng, B. (2018). Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure. Agr. Ecosyst. Environ., 268, 24–33. https://doi.org/10.1016/j.agee.2018.09.001.
Zörb, C., Senbayram, M. & Peiter, E. (2014). Potassium in agriculture – Status and perspectives. J. Plant Physiol., 171, 656–669. https://doi.org/10.1016/j.jplph.2013.08.008.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Ana Luiza Privado Martins Feitosa; Glécio Machado Siqueira; Emanoel Gomes de Moura; Anágila Janenis Cardoso Silva; Alana das Chagas Ferreira Aguiar
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.