Desenvolvimento de um índice para priorização dos remanescentes da Mata Atlântica para a conservação da biodiversidade

Autores

DOI:

https://doi.org/10.33448/rsd-v11i5.27962

Palavras-chave:

Métricas da paisagem; Ecologia da paisagem; SIG; Mata Atlântica; Priorização de fragmentos; Conservação da biodiversidade.

Resumo

A fragmentação da Mata Atlântica é considerada uma séria ameaça à biodiversidade, uma vez que este bioma é considerado um ‘hottest hotspot’. Por esse motivo, muitas estratégias ambientais estão sendo desenvolvidas para apoiá-lo, sendo uma delas a priorização de remanescentes florestais utilizando métricas de ecologia da paisagem. Assim, o objetivo principal deste estudo é o desenvolvimento de um índice de priorização de manchas (IPP) para subsidiar ações e pesquisas de conservação. Primeiramente, foi realizado um diagnóstico dos remanescentes florestais na área de estudo utilizando métricas de ecologia da paisagem. Em seguida, por meio de revisão de literatura e consultoria especializada, foram selecionadas as métricas adequadas de ecologia da paisagem e suas respectivas importâncias dentro do índice. Métricas de paisagem selecionadas (AREA, SHAPE e NEARD) compuseram o PPI. Finalmente, usando uma avaliação ecológica rápida (BII) o PPI foi validado em campo. Os resultados mostraram que a área de estudo possui manchas capazes de auxiliar na manutenção da biodiversidade na paisagem. Além disso, a seleção e a importância atribuída às métricas de ecologia da paisagem se mostraram adequadas. Ademais, o índice é preciso o suficiente para identificar manchas, classes e regiões prioritárias para a conservação da biodiversidade. Por fim, a validação do PPI em campo mostrou que o PPI é eficaz para estimar a integridade das manchas em campo. Em conclusão, nossos resultados sugerem que o PPI pode ser usado para a priorização de remanescentes de Mata Atlântica em uma paisagem coberta principalmente por remanescentes de Mata Atlântica e agricultura.

Referências

Avon, C., & Bergès, L. (2016). Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landscape ecology, 31(7), 1551-1565.

Azhar, B., Lindenmayer, D. B., Wood, J., Fischer, J., Manning, A., Mcelhinny, C., & Zakaria, M. (2013). The influence of the agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis, 155(2), 297-312.

Banks‐Leite, C., Ewers, R. M., Kapos, V., Martensen, A. C., & Metzger, J. P. (2011). Comparing species and measures of landscape structure as indicators of conservation importance. Journal of Applied Ecology, 48(3), 706-714.

Baldwin, R. F., Hanks, R. D., & Dertien, J. S. (2021). Landscape ecology contributions to biodiversity conservation. The Routledge Handbook of Landscape Ecology, 367-385.

Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., & Edwards, P. J. (2008). Indicators for biodiversity in agricultural landscapes: a pan‐European study. Journal of Applied Ecology, 45(1), 141-150.

Boron, V., Deere, N. J., Xofis, P., Link, A., Quiñones-Guerrero, A., Payan, E., & Tzanopoulos, J. (2019). Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biological conservation, 232, 108-116.

Brodie, J. F., Paxton, M., Nagulendran, K., Balamurugan, G., Clements, G. R., Reynolds, G., & Hon, J. (2016). Connecting science, policy, and implementation for landscape‐scale habitat connectivity. Conservation Biology, 30(5), 950-961.

Brudvig, L. A., Leroux, S. J., Albert, C. H., Bruna, E. M., Davies, K. F., Ewers, R. M., & Resasco, J. (2017). Evaluating conceptual models of landscape change. Ecography, 40(1), 74-84.

Bruscagin, R. T., Dixo, M., Famelli, S., & Bertoluci, J. (2017). Patch size effects on richness, abundance, and diversity of leaf-litter lizards from Atlantic rainforest fragments. Salamandra, 53(1), 59-65.

Burke, D. J., Knisely, C., Watson, M. L., Carrino-Kyker, S. R., & Mauk, R. L. (2016). The effects of agricultural history on forest ecological integrity as determined by a rapid forest assessment method. Forest Ecology and Management, 378, 1-13.

Carroll, C., Dunk, J. R., & Moilanen, A. (2010). Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Global Change Biology, 16(3), 891-904.

Carvalho, F., Carvalho, R., Mira, A., & Beja, P. (2016). Assessing landscape functional connectivity in a forest carnivore using path selection functions. Landscape Ecology, 31(5), 1021-1036.

de Lima, G. T. N. P., dos Santos Hackbart, V. C., Bertolo, L. S., & dos Santos, R. F. (2016). Identifying driving forces of landscape changes: Historical relationships and the availability of ecosystem services in the Atlantic forest. Ecosystem services, 22, 11-17.

de Mello, K., Randhir, T. O., Valente, R. A., & Vettorazzi, C. A. (2017). Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecological Engineering, 108, 514-524.

Dickson, B. G., Zachmann, L. J., & Albano, C. M. (2014). Systematic identification of potential conservation priority areas on roadless Bureau of Land Management lands in the western United States. Biological Conservation, 178, 117-127.

Edwards, F. A., Finan, J., Graham, L. K., Larsen, T. H., Wilcove, D. S., Hsu, W. W., & Hamer, K. C. (2017). The impact of logging roads on dung beetle assemblages in a tropical rainforest reserve. Biological conservation, 205, 85-92.

Ewers, R. M., & Didham, R. K. (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological reviews, 81(1), 117-142.

de F Fernandes, J., de Souza, A. L., & Tanaka, M. O. (2014). Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia, 724(1), 175-185.

Galvani, F. M., Graciano-Silva, T., & Cardoso-Leite, E. (2020). Is biotic integrity of urban forests remants related with their size and shape? CERNE, 26, 09-17.

Gascon, C., Williamson, G. B., & da Fonseca, G. A. (2000). Receding forest edges and vanishing reserves. Science, 288(5470), 1356-1358.

Hanski, I., & Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape. Nature, 404(6779), 755-758.

Hodgson, J. A., Moilanen, A., Wintle, B. A., & Thomas, C. D. (2011). Habitat area, quality and connectivity: striking the balance for efficient conservation. Journal of Applied Ecology, 48(1), 148-152.

Hodgson, J. A., Thomas, C. D., Wintle, B. A., & Moilanen, A. (2009). Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 46(5), 964-969.

Herrera, L. P., Sabatino, M. C., Jaimes, F. R., & Saura, S. (2017). Landscape connectivity and the role of small habitat patches as stepping stones: an assessment of the grassland biome in South America. Biodiversity and conservation, 26(14), 3465-3479.

Iezzi, M. E., Di Bitetti, M. S., Pardo, J. M., Paviolo, A., Cruz, P., & De Angelo, C. (2022). Forest fragments prioritization based on their connectivity contribution for multiple Atlantic Forest mammals. Biological Conservation, 266, 109433.

Joly, C. A., Metzger, J. P., & Tabarelli, M. (2014). Experiences from the B Brazilian A Atlantic Forest: ecological findings and conservation initiatives. New phytologist, 204(3), 459-473.

Jones, K. R., Watson, J. E., Possingham, H. P., & Klein, C. J. (2016). Incorporating climate change into spatial conservation prioritisation: A review. Biological Conservation, 194, 121-130.

Jousimo, J., Tack, A. J., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C., & Laine, A. L. (2014). Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science, 344(6189), 1289-1293.

Liu, H., & Weng, Q. (2013). Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto International, 28(7), 582-593.

Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied geography, 56, 42-54.

Magioli, M., Ferraz, K. M. P. M. D. B., Setz, E. Z. F., Percequillo, A. R., Rondon, M. V. D. S. S., Kuhnen, V. V., & Rodrigues, M. G. (2016). Connectivity maintain mammal assemblages functional diversity within agricultural and fragmented landscapes. European journal of wildlife research, 62(4), 431-446.

Magnago, L. F. S., Magrach, A., Laurance, W. F., Martins, S. V., Meira‐Neto, J. A. A., Simonelli, M., & Edwards, D. P. (2015). Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Global Change Biology, 21(9), 3455-3468.

Martinelli, G., Valente, A. S. M., Maurenza, D., Kutschenko, D. C., Judice, D. M., Silva, D. S., & Penedo, T. S. A. (2013). Avaliações de risco de extinção de espécies da flora brasileira. Livro vermelho da flora do Brasil, 1.

Mateo-Sánchez, M. C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A., & Saura, S. (2015). Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere, 6(4), 1-16.

McGarigal, K. (2006). Landscape pattern metrics. Encyclopedia of environmetrics.

Medeiros, H. R., & Torezan, J. M. (2013). Evaluating the ecological integrity of Atlantic forest remnants by using rapid ecological assessment. Environmental monitoring and assessment, 185(5), 4373-4382.

Melo, F. P., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., & Tabarelli, M. (2013). On the hope for biodiversity-friendly tropical landscapes. Trends in ecology & evolution, 28(8), 462-468.

Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., & Da Fonseca, G. A. B. (2005). Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions: Conservation International. Sierra Madre, Cemex, 315.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.

Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50.

Nicasio-Arzeta, S., Zermeño-Hernández, I. E., Maza-Villalobos, S., & Benítez-Malvido, J. (2021). Landscape structure shapes the diversity of tree seedlings at multiple spatial scales in a fragmented tropical rainforest. PloS one, 16(7), e0253284.

Oakleaf, J. R., Matsumoto, M., Kennedy, C. M., Baumgarten, L., Miteva, D., Sochi, K., & Kiesecker, J. (2017). LegalGEO: Conservation tool to guide the siting of legal reserves under the Brazilian Forest Code. Applied Geography, 86, 53-65.

Pardini, R., de Souza, S. M., Braga-Neto, R., & Metzger, J. P. (2005). The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological conservation, 124(2), 253-266.

Paviolo, A., De Angelo, C., Ferraz, K. M., Morato, R. G., Martinez Pardo, J., Srbek-Araujo, A. C., & Azevedo, F. (2016). A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Scientific reports, 6(1), 1-16.

Spiesman, B. J., Stapper, A. P., & Inouye, B. D. (2018). Patch size, isolation, and matrix effects on biodiversity and ecosystem functioning in a landscape microcosm. Ecosphere, 9(3), e02173.

Phillips, H. R., Halley, J. M., Urbina‐Cardona, J. N., & Purvis, A. (2018). The effect of fragment area on site‐level biodiversity. Ecography, 41(7), 1220-1231.

Pierik, M. E., Dell’Acqua, M., Confalonieri, R., Bocchi, S., & Gomarasca, S. (2016). Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecological indicators, 67, 807-820.

Pinto, S. R., Melo, F., Tabarelli, M., Padovesi, A., Mesquita, C. A., de Mattos Scaramuzza, C. A., & Brancalion, P. H. (2014). Governing and delivering a biome-wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil. Forests, 5(9), 2212-2229.

Pirnat, J., & Hladnik, D. (2016). Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landscape and urban planning, 153, 129-139.

Polenšek, M., & Pirnat, J. (2018). Forest patch connectivity: the case of the Kranj-Sora Basin, Slovenia. Acta geographica Slovenica, 58(1).

Porto, T. J., Pinto‐da‐Rocha, R., & da Rocha, P. L. B. (2018). Regional distribution patterns can predict the local habitat specialization of arachnids in heterogeneous landscapes of the Atlantic Forest. Diversity and Distributions, 24(3), 375-386.

Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation, 142(6), 1141-1153.

Ribeiro, M. C., Martensen, A. C., Metzger, J. P., Tabarelli, M., Scarano, F., & Fortin, M. J. (2011). The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In Biodiversity hotspots (pp. 405-434). Springer, Berlin, Heidelberg.

Sánchez-de-Jesús, H. A., Arroyo-Rodríguez, V., Andresen, E., & Escobar, F. (2016). Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31(4), 843-854.

Schelhas, J., & Greenberg, R. S. (Eds.). (1996). Forest patches in tropical landscapes. Island press.

Shrestha, M., Piman, T., & Grünbühel, C. (2021). Prioritizing key biodiversity areas for conservation based on threats and ecosystem services using participatory and GIS-based modeling in Chindwin River Basin, Myanmar. Ecosystem Services, 48, 101244.

Schindler, S., von Wehrden, H., Poirazidis, K., Hochachka, W. M., Wrbka, T., & Kati, V. (2015). Performance of methods to select landscape metrics for modelling species richness. Ecological Modelling, 295, 107-112.

Spear, S. F., Cushman, S. A., & McRae, B. H. (2015). Resistance surface modeling in landscape genetics. Landscape genetics, 129-148.

Specht, M. J., Pinto, S. R. R., Albuquerque, U. P., Tabarelli, M., & Melo, F. P. (2015). Burning biodiversity: Fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. Global Ecology and Conservation, 3, 200-209.

Tabarelli, M., Pinto, L. P., Silva, J. M. C., Hirota, M. M., & Bedê, L. C. (2005). Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade, 1(1), 132-138.

Threlfall, C. G., Law, B., & Banks, P. B. (2012). Sensitivity of insectivorous bats to urbanization: Implications for suburban conservation planning. Biological Conservation, 146(1), 41-52.

Toledo-Aceves, T., García-Franco, J. G., Williams-Linera, G., MacMillan, K., & Gallardo-Hernández, C. (2014). Significance of remnant cloud forest fragments as reservoirs of tree and epiphytic bromeliad diversity. Tropical Conservation Science, 7(2), 230-243.

Uezu, A., Beyer, D. D., & Metzger, J. P. (2008). Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodiversity and Conservation, 17(8), 1907-1922.

Vettorazzi, C. A., & Valente, R. A. (2016). Priority areas for forest restoration aiming at the conservation of water resources. Ecological Engineering, 94, 255-267.

Zheng, C., Pennanen, J., & Ovaskainen, O. (2009). Modelling dispersal with diffusion and habitat selection: analytical results for highly fragmented landscapes. Ecological modelling, 220(12), 1495-1505.

WWF available at: http://wwf.panda.org/knowledge_hub/where_we_work/atlantic_forests/.

Downloads

Publicado

28/03/2022

Como Citar

TORO, A. P. S. G. D. D. .; CARDOSO-LEITE, E.; VALENTE, R. A. . Desenvolvimento de um índice para priorização dos remanescentes da Mata Atlântica para a conservação da biodiversidade . Research, Society and Development, [S. l.], v. 11, n. 5, p. e2811527962, 2022. DOI: 10.33448/rsd-v11i5.27962. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27962. Acesso em: 21 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas