Probiotic milk with sweetener: Development, characterization, and in vitro gastrointestinal resistance of Bifidobacterium lactis HN019

Autores

DOI:

https://doi.org/10.33448/rsd-v11i5.28130

Palavras-chave:

Alimento funcional; Bifidobactérias; Fermentação; Análise sensorial; Stevia.

Resumo

The consumption of functional foods, in particular those containing bioactive ingredients and low calories, has increased in line with greater concerns regarding healthy eating habits. In this study, skimmed milk with added probiotic Bifidobacterium animalis subsp. Lactis HN019™ and sweetener was developed and characterised. Probiotic viability during cold storage (5 °C for 60 days) and resistance to simulated gastric and enteric conditions were also evaluated. The product was evaluated by untrained panellists who undertook preference and intent to purchase tests, comparing it to a probiotic milk with added stevia and a non-sweetened probiotic milk. The ready-to-eat product contained 0.38% lactic acid, had a pH of 5.34, protein content of 3.92%, carbohydrate of 4.08%, total dry extract of 8.81%, and ash content of 0.81%. The probiotic B. lactis HN019® grew and remained in the product at high concentrations (9.04 log UFC/mL). During cold storage, there was a decrease of only one cycle log of viability. A subtle reduction in the pH value and increase in the titratable acidity (p < 0.05) was found. During simulation of GIT conditions, the HN019 strain showed a survival rate of 93.72% and 83% in probiotic milk that was newly produced and stored for 60 days, respectively. Related to sensory acceptance, the panellists showed a preference for the sucrose sweetened milk, followed by the milk with sweetener while the no sugar fermented milk had a lower preference. Applying the scale of intent to purchase, the panellists would maybe buy the product with a sweetener if it were available on the market. The product was defined as a light probiotic skim milk, since the caloric value was reduced by 53.04% compared to commercial cultured milks. Its mild taste, due to low acidity, high viability, and resistance to the probiotic in the gastrointestinal tract in vitro, and the low caloric content differentiated it from the commercial fermented milks that are currently available. Therefore, this low-calorie sweetened milk may fill a poorly explored market niche for consumers that require caloric restrictions and who value the consumption of functional foods such as probiotics.

Referências

Agarwal, V., Kochhar, A., & Sachdeva, R. (2010). Avaliação sensorial e nutricional de produtos lácteos doces preparados com estévia em pó para diabéticos. Studies on Ethno-Medicine, 4 (1), 9-13.

AOAC. Official Methods of Analysis. Association of Official Analytical Chemists. (20 ed.), 2016.

Adams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition Research Reviews, 23 (1): 37-46.

Bedani, R., Rossi, E. A., & Saad, S. M. I. (2013). Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology, 34(2), 382-389.

Bernini, L. J., Simão, A. N. C., Alfieri, D. F., Lozovoy, M. A. B., Mari, N. L., de Souza, C. H. B., ... & Costa, G. N. (2016). Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition, 32(6), 716-719.

Bertazzoni, E., Donelli, G., Midtvedt, T., Nicoli, J., & Sanz, Y. (2013). Probiotics and clinical effects: Is the number what counts? Journal of chemotherapy, 25(4), 193-212.

Bogsan, C. S., Florence, A. C. R., Perina, N., Hirota, C., Soares, F. A. S. M., Silva, R. C., & Oliveira, M. N. (2013). Survival of Bifidobacterium lactis HN019 and release of biogenic compounds in unfermented and fermented milk is affected by chilled storage at 4 C. J. Prob. Health, 4(114).

Boileau, A., Fry, J. C., & Murray, R. (2012). A new calorie‐free sugar substitute from the leaf of the stevia plant arrives in the UK. Nutrition Bulletin, 37(1), 47-50.

Brasil. Resolução RDC nº. 5, de 13 novembro de 2000. Regulamento técnico sobre os Padrões de identidade e qualidade de leites fermentados, constantes do anexo desta Resolução. Diário Oficial da União, Brasília, DF, 2000.

Brasil. Ministério da Agricultura e do Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. Instrução Normativa Nº46. Regulamento Técnico de Identidade e Qualidade de Leites Fermentados. Brasília, 2007. Publicado no Diário Oficial da União

de 24/10/2007, Seção 1, Página 5.

Brasil. Resolução RDC nº. 54, de 12 novembro de 2012. Regulamento Técnico sobre Informação Nutricional Complementa, constantes do anexo desta Resolução. Diário Oficial da União, Brasília, DF, 2012. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0054_12_11_2012.html

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 278, de 22 de setembro de 2005, atualizada em abril de 2016. Alimentos com alegações de propriedades funcionais e ou de saúde, novos alimentos/ingredientes, substâncias bioativas e probióticos. Diário Oficial da União, Brasília, DF, 2005. http://www.anvisa.gov. br/alimentos/ comissoes/tecno_lista_alega.htm

Brasil. Resolução IN 60 de 23 de dezembro de 2019. Instrução Normativa estabelece as listas de padrões microbiológicos para alimentos prontos para oferta ao consumidor. Diário Oficial da União, Ed .249, seção 1, pg 133. Brasília, DF, 2019. https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-60-de-23-de-dezembro-de-2019-235332356

Briczinski, E. P., Loquasto, J. R., Barrangou, R., Dudley, E. G., Roberts, A. M., & Roberts, R. F. (2009). Strain-specific genotyping of Bifidobacterium animalis subsp. lactis by using single-nucleotide polymorphisms, insertions, and deletions. Applied and environmental microbiology, 75(23), 7501-7508.

Buriti, F. C., Castro, I. A., & Saad, S. M. (2010). Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. International Journal of Food Microbiology, 137(2-3), 121-129.

Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203-211.

Van de Casteele, S., Vanheuverzwijn, T., Ruyssen, T., Van Assche, P., Swings, J., & Huys, G. (2006). Evaluation of culture media for selective enumeration of probiotic strains of lactobacilli and bifidobacteria in combination with yoghurt or cheese starters. International Dairy Journal, 16(12), 1470-1476.

Case, R. A.; bradley jr. R. L.; williams, R. R. Chemical and Physical Methods. (1985). In: American Public Health Association. Standard Methods for the Examination of Dairy Products. 15º ed. Washington, p. 327-404.

Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (1998). Ingredient selection criteria for probiotic microorganisms in functional dairy foods. International journal of dairy technology, 51(4), 123-136.

Chick, H., Shin, H. S., & Ustunol, Z. (2001). Growth and acid production by lactic acid bacteria and bifidobacteria grown in skim milk containing honey. Journal of Food Science, 66(3), 478-481.

Collado, M. C., & Sanz, Y. (2007). Induction of acid resistance in Bifidobacterium: a mechanism for improving desirable traits of potentially probiotic strains. Journal of applied microbiology, 103(4), 1147-1157.

Christaki, E., Bonos, E., Giannenas, I., Karatzia, M. A., & Florou-Paneri, P. (2013). Stevia rebaudiana as a novel source of food additives. Journal of Food & Nutrition Research, 52(4).

Dapoigny, M., Piche, T., Ducrotte, P., Lunaud, B., Cardot, J. M., & Bernalier-Donadille, A. (2012). Efficacy and safety profile of LCR35 complete freeze-dried culture in irritable bowel syndrome: a randomized, double-blind study. World journal of gastroenterology: WJG, 18(17), 2067.

Dave, R. I., & Shah, N. P. (1997). Effect of cysteine on the viability of yoghurt and probiotic bacteria in yoghurts made with commercial starter cultures. International Dairy Journal, 7(8-9), 537-545.

De Vries, W., & Stouthamer, A. H. (1967). Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. Journal of Bacteriology, 93(2), 574-576.

Dutcosky, S. D. (2011). Análise sensorial de alimentos. 4. ed. Curitiba: Champagnat, (pp. 304-310).

FAO/WHO. Food and Agriculture Organization of United Nations; World Health Organization. Food and Nutrition paper 85. Probiotics in food - Health and nutritional properties and guidelines for evaluation. (2006). Report of a Joint FAO-WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina, 2001.

FAO/WHO. Food and Agriculture Organization of United Nations; World Health Organization. Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London Ontario, Canada; 2002

Ferrándiz, M. J., & de la Campa, A. G. (2002). The membrane-associated F0F1 ATPase is essential for the viability of Streptococcus pneumoniae. FEMS microbiology letters, 212(1), 133-138.

Fuller, R. (1989). Probiotics in man and animals. Journal Applied Bacteriology, 66: 365-378.

Gardana, C., Simonetti, P., Canzi, E., Zanchi, R., & Pietta, P. (2003). Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. Journal of agricultural and food chemistry, 51(22), 6618-6622.

Gardana, C., Scaglianti, M., & Simonetti, P. (2010). Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry. Journal of chromatography A, 1217(9), 1463-1470.

Granato, D., Branco, G. F., Cruz, A. G., Faria, J. D. A. F., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive reviews in food science and food safety, 9(5), 455-470.

Gomes, A. M., Malcata, F. X., & Klaver, F. A. (1998). Growth enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by milk hydrolyzates. Journal of Dairy Science, 81(11), 2817-2825.

Gueimonde, M., & Salminen, S. (2006). New methods for selecting and evaluating probiotics. Digestive and Liver Disease, 38, S242-S247.

Guo, Z., Wang, J., Yan, L., Chen, W., Liu, X. M., & Zhang, H. P. (2009). In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with selected probiotic strains. LWT-Food Science and Technology, 42(10), 1640-1646.

Havenaar, R., Ten Brink, B., & Huis, J. H. (1992). Selection of strains for probiotic use. In Probiotics (pp. 209-224). Springer, Dordrecht.

Henrique-Bana, F. C., Macedo Jr, F., Oliveira, L. G. S., Takihara, A. M., Miglioranza, L. H. S., Spinosa, W. A., & Costa, G. N. (2019). Bifidobacterium lactis HN019: survival, acid production and impact on sensory acceptance of fermented milk. International Food Research Journal, 26(2), 695-703.

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., ... & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology.

IDF International Dairy Federation. (1991). Yogurt: Determination of titratable acidity. Bulletin of the International Dairy Federation, n.150, 1 – 2.

IDF International Dairy Federation. (1988). Yogurt: enumeration of characteristics micro-organisms count technique at 37ºC. Bulletin of the International Dairy Federation, n.117, p.1- 4.

Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and cell biology, 78(1), 80-88.

Klaver, F. A. M.; Kingma, F.; & Weerkamp, A. H. (1993). Growth and survival of bifidobacteria in milk. Netherlands Milk and Dairy Journal, 47, 151–164.

Klindt-Toldam, S., Larsen, S. K., Saaby, L., Olsen, L. R., Svenstrup, G., Müllertz, A., & Zielińska, D. (2016). Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 encapsulated in chocolate during in vitro simulated passage of the upper gastrointestinal tract. LWT, 74, 404-410.

Kunová, G., Rada, V., Vidaillac, A., & Lisova, I. (2014). Utilisation of steviol glycosides from Stevia rebaudiana (Bertoni) by lactobacilli and bifidobacteria in in vitro conditions. Folia microbiologica, 59(3), 251-255.

Leivers, S., Hidalgo-Cantabrana, C., Robinson, G., Margolles, A., Ruas-Madiedo, P., & Laws, A. P. (2011). Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster. Carbohydrate research, 346(17), 2710-2717.

Lisak, K., Jeličić, I., Tratnik, L., & Božanić, R. (2011). Influence of sweetener stevia on the quality of strawberry flavoured fresh yoghurt. Mljekarstvo, 61(3), 220.

Liu, Z., Jiang, Z., Zhou, K., Li, P., Liu, G., & Zhang, B. (2007). Screening of bifidobacteria with acquired tolerance to human gastrointestinal tract. Anaerobe, 13(5-6), 215-219.

Liu, C., Zhang, Z. Y., Dong, K., & Guo, X. K. (2010). Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407. World journal of gastroenterology: WJG, 16(18), 2283.

Lopes, S. M. S., Francisco, M. G., Higashi, B., de Almeida, R. T. R., Krausová, G., Pilau, E. J., & de Oliveira, A. J. B. (2016). Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydrate polymers, 152, 718-725.

Lopes, S. M. S., Krausová, G., Carneiro, J. W. P., Gonçalves, J. E., Gonçalves, R. A. C., & de Oliveira, A. J. B. (2017). A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food chemistry, 225, 154-161.

Mättö, J., Alakomi, H. L., Vaari, A., Virkajärvi, I., & Saarela, M. (2006). Influence of processing conditions on Bifidobacterium animalis subsp. lactis functionality with a special focus on acid tolerance and factors affecting it. International Dairy Journal, 16(9), 1029-1037.

Mehdi, K., Hadadji, M., Benkaddour, B., Guessas, B., & Kihal, M. (2015). Resistance at Low Ph Values and Bile Tolerance for Selection of Bifidobacterium Strains Isolated from New Born Feces as Potential Probiotic. Advances in Environmental Biology, 9(14), 122-128.

Meile, L., Ludwig, W., Rueger, U., Gut, C., Kaufmann, P., Dasen, G., & Teuber, M. (1997). Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Systematic and Applied Microbiology, 20(1), 57-64.

Meng, H., Lee, Y., Ba, Z., Peng, J., Lin, J., Boyer, A. S., & Rogers, C. J. (2016). Consumption of Bifidobacterium animalis subsp. lactis BB‐12 impacts upper respiratory tract infection and the function of NK and T cells in healthy adults. Molecular nutrition & food research, 60(5), 1161-1171.

Nagpal, R., Kumar, A., Kumar, M., Behare, P. V., Jain, S., & Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS microbiology letters, 334(1), 1-15.

De Oliveira, A. J. B., Gonçalves, R. A. C., Chierrito, T. P. C., Dos Santos, M. M., de Souza, L. M., Gorin, P. A. J., & Iacomini, M. (2011). Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni. Food Chemistry, 129(2), 305-311.

Østile, H. M.; Helland, M.H.; Narvhus, J. A. (2003). Growth and metabolism of selected strains of probiotic bacteria in milk. International Journal of Food Microbiology, 87(1-2), 17-27.

Prasad, J., Gill, H., Smart, J., & Gopal, P. K. (1998). Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal, 8(12), 993-1002.

Prasanna, P. H. P., Grandison, A. S., & Charalampopoulos, D. (2014). Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Research International, 55, 247-262.

Presti, I., D’orazio, G., Labra, M., La Ferla, B., Mezzasalma, V., Bizzaro, G., ... & Di Gennaro, P. (2015). Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect. Applied microbiology and biotechnology, 99(13), 5613-5626.

Ranadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food research international, 43(1), 1-7.

Ricoldi, M. S., Furlaneto, F. A., Oliveira, L. F., Teixeira, G. C., Pischiotini, J. P., Moreira, A. L., ... & Messora, M. R. (2017). Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats. PloS one, 12(6), e0179946.

Rodrigues, D., Rocha-Santos, T. A., Pereira, C. I., Gomes, A. M., Malcata, F. X., & Freitas, A. C. (2011). The potential effect of FOS and inulin upon probiotic bacterium performance in curdled milk matrices. LWT-Food Science and Technology, 44(1), 100-108.

Salminen, S., Ouwehand, A., Benno, Y., & Lee, Y. K. (1999). Probiotics: how should they be defined? Trends in food science & technology, 10(3), 107-110.

Sánchez, B., Ruiz, L., Gueimonde, M., Ruas-Madiedo, P., & Margolles, A. (2013). Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological research, 69(1), 127-136.

Sánchez, B., Champomier-Vergès, M. C., Collado, M. D. C., Anglade, P., Baraige, F., Sanz, Y., & Zagorec, M. (2007). Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Applied and Environmental Microbiology, 73(20), 6450-6459.

Scardovi, V., Sgorbati, B., & Zani, G. (1971). Starch gel electrophoresis of fructose-6-phosphate phosphoketolase in the genus Bifidobacterium. Journal of bacteriology, 106(3), 1036-1039.

Shah, N. P. (2000). Probiotic bacteria: selective enumeration and survival in dairy foods. Journal of dairy science, 83(4), 894-907.

Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1-8.

Sidarenka, A. V., Novik, G. I., & Akimov, V. N. (2008). Application of molecular methods to classification and identification of bacteria of the genus Bifidobacterium. Microbiology, 77(3), 251-260.

Soccol, C. R., Vandenberghe, L. P. D. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., & Thomaz-Soccol, V. (2010). The potential of probiotics: a review. Food Technology and Biotechnology, 48(4), 413-434.

Soejarto, D. D., Compadre, C. M., Medon, P. J., Kamath, S. K., & Kinghorn, A. D. (1983). Potential sweetening agents of plant origin. II. Field search for sweet-tasting Stevia species. Economic Botany, 37(1), 71-79.

Thamer, K. G., & Penna, A. L. B. (2006). Caracterização de bebidas lácteas funcionais fermentadas por probióticos e acrescidas de prebiótico. Food Science and Technology, 26, 589-595.

Thiyagarajan, M., & Venkatachalam, P. (2012). Large scale in vitro propagation of Stevia rebaudiana (bert) for commercial application: Pharmaceutically important and antidiabetic medicinal herb. Industrial Crops and Products, 37(1), 111-117.

Transparency Market Research. (2018). Probiotic Market By Application (Food and Beverages, Dietary Supplements, Animal Feed) By End Users (Human Probiotics, Animal Probiotics) - Global Industry Analysis, Size, Share, Growth and Forecast 2014 - 2020. <http://www.transparencymarketresearch.com/pressrelease/probiotics-market.htm>.

Vandenplas, Y., Huys, G., & Daube, G. (2015). Probióticos: informações atualizadas☆. Jornal de pediatria, 91, 06-21.

Downloads

Publicado

09/04/2022

Como Citar

DOMINGUES , A. F. .; OLIVEIRA, L. G. S. de; SANCHES, A.; MARONESI, F.; BENIS, C. M. .; SPINOSA, W. A.; COSTA, G. N. . Probiotic milk with sweetener: Development, characterization, and in vitro gastrointestinal resistance of Bifidobacterium lactis HN019. Research, Society and Development, [S. l.], v. 11, n. 5, p. e34811528130, 2022. DOI: 10.33448/rsd-v11i5.28130. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28130. Acesso em: 21 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas