Diagnose do ciclo produtivo no aprofundamento de pequenos poços

Autores

DOI:

https://doi.org/10.33448/rsd-v11i5.28233

Palavras-chave:

Trabalho mineiro; Mina subterrânea; Pequenas minas; Distribuição estatística.

Resumo

O aprofundamento de poços é uma atividade clássica em minas subterrâneas. Em poços de pequena seção transversal ou em minas com baixos índices de mecanização é comum o uso de perfuratrizes pneumáticas manuais e desmonte por gelatina explosiva em cartuchos, empregando tiragem natural ou dutos flexíveis com ventiladores axiais para exaustão de gases e fumos, remoção de material desmontado por paleamento manual e transporte em caçambas basculantes içáveis. Um sistema deste tipo foi estudado, constituído por um poço de secção retangular (3,7 m x 2,0 m), com profundidade final de 94 m, escavado para se obterem amostras para ensaios de beneficiamento mineral em escala piloto, antes posta em marcha industrial da cava a céu aberto. O poço era munido de colar de concreto e suas paredes eram sustentadas por quadros de madeira espaçados de 1,5 m e pranchões de madeira de 25 mm de espessura como revestimento. Este poço foi escavado em rochas xistosas pertencentes ao depósito hidrotermal metamorfoseado de cobre e ouro localizado na Chapada (município de Mara Rosa, Brasil). Foram analisadas estatisticamente as planilhas de produção diária de um mês de campanha, abrangendo todo o ciclo das operações, nomeadamente: perfuração, carregamento e desmonte, exaustão de fumos, remoção do material desmontado, aparelhamento de paredes e faces e montagem de sistema de escoramento. As paradas de operação também foram quantificadas. A análise estatística dos índices de produtividade permitiu a detecção de pontos críticos da operação e o estabelecimento de referência para operações mineiras similares.

Biografia do Autor

José Margarida da Silva, Universidade Federal de Ouro Preto

Universidade Federal de Ouro Preto – UFOP,
Escola de Minas, Departamento de Engenharia de
Minas, Ouro Preto - Minas Gerais - Brasil.

Referências

Bajić, Z., Bogdanov, J., Dimitrijević, R., & Jeremić, R. (2016). Investigation of scaled distance influence on shockwave overpressure for plastic explosive PPE-01. 19th International Seminar "New Trends in Research of Energetic Materials". Pardubice: University of Pardubice. 1 – 6.

Boky, B. (1967). Mining. Moscow: Mir Publishers.753 p.

Cintra, E. C. (2003). Aplicação de redes neurais no controle de teores de cobre e ouro do depósito de Chapada (GO) (PhD Thesis). Rio Claro: Universidade Estadual Paulista — Instituto de Geociências e Ciências Exatas.

Cotica, E. (209). Personal Communication at Mina Engenho D’Água, Mundo Mineral, Rio Acima, Minas Gerais, Brazil.

da Luz, J. A. M., Montenegro-Balarezo, F. J., & Pereira, C. A. (2003). Emprego de argamassa expansiva e termoconsolidação de peças em cantaria. Rem: Rev. Esc. Minas, 56(3); DOI: S0370-44672003000300003.

de Vries A., & de Looze, M. (2019). The Effect of Arm Support Exoskeletons in Realistic Work Activities: A Review Study. Journal of Ergonomics, 9(4); 1–9.

Faurie, J. (2010) Mining contractor working on safer product — enhancing shaft sinking method. Available at www.miningwekly.com, access in 2010.

Dowis, J. E. Shaft sinking cost analysis [Master dissertation] (1972). Tucson: The University of Arizona.159 p.

Fujimura, F., Hennies,W. T., Soares, L., & Carnero, L. T. C. (2001). Mining shaft construction method at Fazenda Brasileiro Gold Mine — CVRD. Mine Planning and Equipment Selection Symposium; 223-231.

Gardner, E. D., & Johnson, J. F. (1932). Shaft-sinking practices and costs (Bulletin 357). Washington: U. S. Department of Commerce/Bureau of Mines. 116 p.

Harris. M. L., & Mainiero, R. J. (2008). Monitoring and removal of CO in blasting operations. Safety Science; 46(10); 1393 – 1405.

Hashimoto, G. H., Rodrigues, F. S., & Gontijo, A. (2014). Análise do Abatimento de Choco Mecanizado em Desmontes Subterrâneos com Pré-Corte em Galerias de Desenvolvimento. Simpósio Brasileiro de Mecânica das Rochas; 1 – 6.

Hiserman, J. (2020). The Rise of the Exoskeletons. Journal of Ergonomics; 10(2); 1–2. 10.35248/2165-7556.20.10.e187.

Huysamena, K., de Loozeb, M., Boschb, T., Ortizc, J., Toxiric, S., & O'sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics 68; 125–131.

Kumar, A. R. K., Shenbagaraj, N. A., & Haridasan, V. P. (2017). Single arm exoskeleton for industrial use — a project report. Kattankulathur: S.R.M. University. 52 p.

Kumar, R., Choudhury, D., Bhargava, K. (2016). Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. Journal of Rock Mechanics and Geotechnical Engineering; 8(3); 341 – 349.

Kuyumjian, R. M. (1989). The geochemistry and tectonic significance of amphibolites from the Chapada sequence, central Brazil (PhD Thesis). London: University of London.

Lack, P. H. (2005). Personal Communication at Departamento de Engenharia de Minas, Escola de Minas, Universidade Federal de Ouro Preto, Brazil.

Linnera, T., Panb, M., Pana,W., Taghavia, M., Panb, W., & Bocka, T. (2018). Identification of Usage Scenarios for Robotic Exoskeletons in the Context of the Hong Kong Construction Industry. 35th International Symposium on Automation and Robotics in Construction (ISARC 2018); 3–8.

Liu, D. X., Wu, X., Wang, M., Chen, C., Zhang, T., & Fu, R. (2015). Non-Binding Lower Extremity Exoskeleton (NextExo) for Load-Bearing. Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics; Zhuhai, China.

Lopes, P. F. T., Luz, J. A. M. da, Pereira, & T., Silveira, L. G. (2022). Statistical analysis of blast-induced vibration near an open pit mine. Anais da Academia Brasileira de Ciências (in press).

Lopes, P. F. T.; Luz, J. A. M. da, & Milhomem, F. de O. (2020). Specific surface area of polydispersions as a function of size distribution sharpness. Anais da Academia Brasileira de Ciências; 92(3); 1–7.

Mancala (2017). Innovative Mining & Civil Solutions — Raise Boring: Innovative Raise Drilling Technology and Equipment. 2p. http://files8.design-editor.com/93/9396758/UploadedFiles/0AF92F9F-3A88-D9BC-7AF4- 87523F18 AC C C.pdf.

Netto, F. (2010). Planejamento de Lavra Subterrânea. VI Congresso Brasileiro de Mina Subterrânea. UFMG/IBRAM.

Oliveira, C. G., Oliveira, F. B., Dantas E. L., & Fuck, R. A. (2007). Nota Explicativa da Folha de Campinorte (SD. 22-Z-B-I). Brasília: CPRM/UNB. 77 p.

Ramos Filho, W. L., Araujo Filho, J. O., & Kuyumjian, R. M. (2003). Características do Ambiente Estrutural do Depósito de Chapada, Goiás. Revista Brasileira de Geociências; 33(2); 109–116.

Sanada, H., Sato, T., Horiuchi, Y., Mikake, S., Okihara, M., Yahagi, R., & Kobayashi, S. (2015). Excavation cycle times recorded during sinking of a deep shaft in crystalline rock – A case example at Ventilation Shaft of Mizunami URL, Japan. Tunnelling and Underground Space Technology; 50; 68 – 78.

Schneider, L. C. Blasting and Explosives. (2002). In: Lowrie R L. (Ed.). SME Mining Reference Handbook. 203 – 214. Littleton: SME. 449 p.

Shahmoradi, J., Roghanchi, P., &Hassanalian, M. (2020). Drones in Underground Mines: Challenges and Applications. In: Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference — University of New Mexico, Albuquerque. Pp 1–2.

Shaterpour-Mamaghani, A., & Bilgin, N. (2016). Some contributions on the estimation of performance and operational parameters of raise borers – A case study in Kure Copper Mine, Turkey. Tunnelling and Underground Space Technology; 54; 37 – 48.

Silva, E. L., & Alcântara, W. M. M. (2008). Nova técnica de abertura de chaminés cegas nas minas FERBASA. V Congresso Brasileiro de Mina Subterrânea. Belo Horizonte: UFMG/IBRAM.

Souza, R. C. (2017). Lavra subterrânea de veios estreitos: dificuldades e soluções. Ouro Preto: Universidade Federal de Ouro Preto. 49 p.

USA Army. Tunnels and Shafts in Rocks. (1997). Washington: U. S. Army. 528 – 534.

Visser, D. (2009). Shaft sinking methods based on the Towlands ore replacement project — Raiseboring. In: Shaft Sinking and Mining Contractors Conference 2009. Johannesburg: The Southern African Institute of Mining and Metallurgy Journal. 13 p.

Zhang, C., Hu, F., & Zou, S. (2015). Effects of blast induced vibrations on the fresh concrete lining of a shaft. Tunnelling and Underground Space Technology; 20; 356 – 361.

Downloads

Publicado

12/04/2022

Como Citar

LUZ, J. A. M. da; SILVA, J. M. da; NEUPPMANN, P. H. . Diagnose do ciclo produtivo no aprofundamento de pequenos poços. Research, Society and Development, [S. l.], v. 11, n. 5, p. e44711528233, 2022. DOI: 10.33448/rsd-v11i5.28233. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28233. Acesso em: 18 maio. 2024.

Edição

Seção

Engenharias