Filmes poliméricos no manejo de feridas: uma revisão
DOI:
https://doi.org/10.33448/rsd-v11i6.28757Palavras-chave:
Polímeros; Feridas; Curativos; Bandagens; Cicatrização de feridas; Ensino de saúde.Resumo
Objetivo: Buscar evidências sobre o desempenho de filmes poliméricos no tratamento de feridas, reunindo artigos científicos nos quais testes que aferem a qualidade e eficiência dos filmes poliméricos no manejo de feridas tenham sidos realizados. Metodologia: Foi realizada a revisão narrativa, de natureza qualitativa, seguindo as recomendações da Cochrane Collaboration de forma adaptada, nas bases Pubmed e Periódicos Capes, incluindo estudos produzidos nos últimos cinco anos, sem restrição de idioma. Resultado: No total foram incluídos 7 estudos, os quais trouxeram dados importantes sobre a boa performance dos filmes poliméricos no processo curativo de feridas. Considerações finais: Os polímeros permitem a produção de filmes poliméricos resistentes, flexíveis, transparentes, biocompatíveis, permitindo a incorporação de ativos e com capacidade de absorver exsudatos, além de possuírem baixo custo. Demonstraram excelentes resultados no tratamento das feridas testadas promovendo rápida cicatrização em comparação aos controles. Incorporar as boas propriedades desses materiais aos conhecimentos clínicos e fisiológicos possibilita lançar mão de uma abordagem mais avançada e eficiente para o tratamento de feridas, tornando o processo de cura mais confortável e funcional para o paciente.
Referências
Afonso, T., Ramos, M. F. H., França, I. L., Pontes, F. A. R., & Silva, S. S. C. (2016). Cuidado Parental à Criança com Paralisia Cerebral: uma Revisão Sistemática da Literatura. Rev. Bras. Ed. Esp., 22(3), 455-470.
Ali, M., Khan, N. R., Basit, H. M., & Mahmood, S. (2020). Physico-chemical based mechanistic insight into surfactant modulated sodium Carboxymethylcellulose film for skin tissue regeneration applications. J. Polym. Res, 27, 1–11.
Azhar, F. F., Rostamzadeh, P., Khordadmehr, M., & Mesgari-Abbasi, M. (2021) Evaluation of a novel bioactive wound dressing: an in vitro and in vivo study. J Wound Care, 2;30(6):482-490. 10.12968/jowc.2021.30.6.482.
Basit, H. M., Ali, M., Shah, M. M., Shah, S. U., Wahab, A., Albarqi, H. A., Alqahtani, A. A., Walbi, I. A., & Khan, N. R. (2021) Microondas habilitadas fisicamente reticuladas de alginato de sódio e filme de pectina e sua aplicação em combinação com nanopartículas de quitosana-curcumina modificadas. Uma nova estratégia para a cicatrização de feridas de queimaduras de 2º grau em animais. Polímeros, 2716. https://doi.org/10.3390/polym1316271
Cesaretti, I. U. R. (1998). Processo fisiológico de cicatrização da ferida. Pelle Sana, 2: 10-2.
Chattopadhyay, S., & Raines, R.T., (2014). Collagen-based biomaterials for wound healing. Biopolymers. Aug;101(8):821-33. 10.1002/bip.22486.
Chen, E.Y.; Liu, W.F.; Megido, L.; Díez, P.; Fuentes, M.; Fager, C.; & Mathur, S. (2018). Understanding and utilizing the biomolecule/nanosystems interface. In Nanotechnologies in Preventive and Regenerative Medicine, 1st ed.; Elsevier Science: Amsterdam, The Netherlands; pp. 207–297.
Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci, 53, 86–168.
Choi, M., Hasan, N., Cao, J., Lee, J., Hlaing, S. P., & Yoo, J.W. (2020). Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int J Biol Macromol, 1;142:680-692. 10.1016/j.ijbiomac.2019.10.009.
Dennis, G., Harrison, W., Agnes, K., & Erastus, G., (2016). Effect of biological control antagonists adsorbed on chitosan immobilized silica nanocomposite on ralstonia solanacearum and growth of tomato seedlings. Adv. Res. 6, 1–23
Dhivya, S., Padma, V.V., & Santhini, E., (2015). Wound dressings–a review. BioMedicine 5 (4). https://doi.org/10.7603/s40681-015-0022-9
Fahs, A., Brogly, M., & Bistac, S., Schmitt, M. (2010). Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties, Carbohydrate Polymers, 80(1), 105-114, https://doi.org/10.1016/j.carbpol.2009.10.071
.
Fahimirad, S., & Ajalloueian, F., (2019). Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm. 566, 307–328. https://doi.org/ 10.1016/j.ijpharm.2019.05.053.
Ferreira, A. M., Santos, I., & Sampaio, C. E. P. (2004). O cuidado de enfermagem nos procedimentos de coleta para análise microbiológica de feridas: aplicabilidade de duas técnicas. Arquivos de Ciência da Saúde, 11(3), 137- 41.
Gould, L. J., (2016). Topical collagen-based biomaterials for chronic wounds: Rationale and clinical application. Adv Wound Care (New Rochelle) 1;5(1):19-31. doi: 10.1089/wound.2014.0595.
Hasatsri, S., Pitiratanaworanat, A., Swangwit, S., Boochakul, C., & Tragoonsupachai, C., (2018). Comparison of the morphological and physical properties of different absorbent wound dressings. Dermatol Res. Pract. 2018, 9367034. https://doi.org/ 10.1155/2018/9367034.
He, L., Cai, S., Wu, B., Mu, C., Zhang, G., & Lin, W. (2012) Trivalent chromium and aluminum affect the thermostability and conformation of collagen very differently. J Inorg Biochem. Dec; 117:124-30, 10.1016/j.jinorgbio.2012.08.017. PMID: 23085592.
Hosseini, M. S. & Nabid, M. R. (2020). Synthesis of Chemically Cross-linked hydrogel films based on basil seed (Ocimum basilicum L.) mucilage for wound dressing drug deliver applications. International Journal of Biological Macromolecules.
Jafari, A., Hassanajili, S., Karimi, M. B., Emami, A., Ghaffari, F., & Azarpira, N. (2018). Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications. Journal of the mechanical behavior of biomedical materials, 88, 395–405. https://doi.org/10.1016/j.jmbbm.2018.09.001
Júnior, D. M., Hausen, M. A., Asami, J., Higa, A. M., Leite, F. L., Mambrini, G P., Rossi, A. L., Komatsu, D., & Duek, E. A. (2021). Um novo substituto dérmico contendo álcool polivinílico com nanopartículas de prata e colágeno com ácido hialurônico: abordagens in vitro e in vivo. Antibióticos, 10, 742. https://doi.org/10.3390/antibiotics10060742
Junior, J. A. O., Shiota, L. M. & Chiavacci, L.A. (2014). Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Revista Matéria, 24-32.
Khanmohammadi, M., Elmizadeh, H., & Ghasemi, K., (2015). Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran. J. Pharm. Res. 14, 665–675.
Lee, C. H., Singla, A., & Lee, Y. (2001). Biomedical applications of collagen. International journal of pharmaceutics, 221(1-2), 1–22. https://doi.org/10.1016/s0378-5173(01)00691-3
Leng, Q., Li, Y., Pang, X., Wang, B., Wu, Z., Lu, Y., Xiong, K., Zhao, L., Zhou, P., & Fu, S. (2020). Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing. Drug delivery, 27(1), 1676–1685. https://doi.org/10.1080/10717544.2020.1853280
Mohebali, A., & Abdouss, M. (2020). Layered biocompatible pH-responsive antibacterial composite film based on HNT/PLGA/chitosan for controlled release of minocycline as burn wound dressing. Int J Biol Macromol, 1;164:4193-4204. doi: 10.1016/j.ijbiomac.2020.09.004. PMID: 32891643.
Nesic, A.R., & Seslija, S.I., (2017). The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging. Food Packaging 637–697.
Notodihardjo, S. C., Morimoto, N., Munisso, M. C., Le, T. M., Mitsui, T., Kakudo, N., & Kusumoto, K. (2020). A comparison of the wound healing process after application of three dermal substitutes with or without basic fibroblast growth factor impregnation in diabetic mice. J. Plast. Reconstr. Aesthet. Surg, 73, 1547–1555
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria/RS. Ed. UAB/NTE/UFSM. ISBN 978-85-8341-204-5
Saber-Samandari, S., Yekta, H., & Saber-Samandari, S., (2015). Effect of iron substitution in hydroxyapatite matrix on swelling properties of composite bead. J. Mineral Metal Mater. Eng. 1, 19–25.
Sahana, T. G. Rekha, P. (2018) Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 45, 2857–2867.
Schiefer, J. L., Rath, R., Held, M., Petersen, W., Werner, J. O., Schaller, H. E., & Rahmanian Schwarz, A., (2016). Frequent application of the new gelatin-collagen nonwoven accelerates wound healing. Adv. Skin Wound Care. 29, 73–78. https://doi.org/ 10.1097/01.ASW.0000476097.86161.57
Sezer, A. D., & Cevher, E. (2011). Biopolymers as Wound Healing Materials: Challenges and New Strategies. In (Ed.), Biomaterials Applications for Nanomedicine. IntechOpen. https://doi.org/10.5772/25177
Sharma, A., Puri, V., Kumar, P., & Singh, I. (2021). Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. Membranes. 11, 7. https://doi.org/10.3390/membranes11010007
Souza, F. R. A. (2018). Efeitos da reticulação com genipina em membranas de quitosana/colágeno para potencial uso como biomaterial. Trabalho de conclusão de curso (Bacharelado em Engenharia de Biotecnologia e Bioprocessos) – Universidade Federal de Campina Grande, Sumé.
Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2017). Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res, 58, 81–94.
Tarun K, Gobi N. (2012). Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian J Fibre Text Res; 37:127–132.
Thomas, S. Visakh, P. M., & Mathew, A. P. (2012). Natural polymers: Their Blends, Composites, and Nanocomposites. State of Art, New Challenges and Opportunities. In: Thomas, S. Visakh, P. M.; Mathew, A. P., (ed.). Springer Science & Business Media, 2012. Advances in Natural Polymers: Composites and Nanocomposites. Ch. 1, p. 1-20.
Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 49, 832–864. https://doi.org/10.1002/ polb.22259.
Zhong, Y., Xiao, H., Seidi, F., & Jin, Y. (2020). Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules,21, 2983–3006.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Carolina Fernanda de Barros; Isabela Angeli de Lima; Élcio José Bunhak
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.