Propriedades da matéria-prima e de pellets produzidos com misturas de madeiras de reflorestamento

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.29070

Palavras-chave:

Bioenergia; Biocombustível sólido; Resíduo florestal; Densificação da biomassa.

Resumo

No Brasil, tem-se disponível grande quantidade de biomassas que podem ser alternativas para produção de pellets, e com o mercado em constante ascensão, a busca por matérias-primas com potencial para geração de energia torna-se uma necessidade em atendimento ao setor. Eucalyptus sp. e Pinus sp., são as principais fontes de fornecimento de madeira no Brasil. Portanto, o objetivo principal deste estudo foi avaliar a qualidade de pellets produzidos com diferentes proporções de misturas entre partículas de madeiras de reflorestamento, Eucalyptus sp. e Pinus sp. As porcentagens de eucalipto em relação ao pinus foram: 0, 10, 20, 50, 80 e 90%. Foi realizada a caracterização das biomassas. Os pellets foram produzidos em matriz peletizadora horizontal de escala laboratorial com sistema de vapor aquecido. Os pellets foram avaliados quanto às propriedades físicas, químicas, energéticas e mecânicas. O poder calorífico superior diminuiu com o aumento da porcentagem de Eucalyptus sp. na mistura. Os teores de cloro e cinzas estão dentro da faixa estabelecida pelos parâmetros internacionais para pellets de madeira.  A durabilidade mecânica média dos pellets produzidos foi de 93%. Os pellets com 80% de eucalipto e 20% de pinus destacaram-se quanto à densidade, taxa de compactação e propriedades mecânicas.

Referências

American Society For Testing Materials. (2007). ASTM D1762-84: standard method for chemical analyses of wood charcoal. ASTM International.

American Society For Testing Materials. (2004). ASTM E711-87: standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. Philadelphia: ASTM International.

Birdsey, R., Duffy, P., Smyth, C., Kurz, W. A., Dugan, A. J., & Houghton, R. (2018). Climate, economic, and environmental impacts of producing wood for bioenergy. Environmental research letters. 13 (5), 50201. 10.1088/1748-9326/aab9d5.

Carroll, J. P., & Finnan, J. (2012). Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering, 112(2), 151-159. 10.1016/j.biosystemseng.2012.03.012.

Castellano, J. M., Gómez, M., Fernández, M., Esteban, L. S., & Carrasco, J. E. (2015). Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel. 139, 629-636. 10.1016/j.fuel.2014.09.033.

Cavalett, O., Slettmo, S. N., & Cherubin, F. Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe. Sustainability. 10(11), 4068. https://doi.org/10.3390/su10114068.

Cordero, T., Marquez, F., Rodriguez-Mirasol, J., & Rodriguez, J. J. (2018). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel. 11,1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5.

Demirbas, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 2(2), 183-188. https://doi.org/10.1016/S0196-8904(00)00050-9.

Deutsches Institut Für Normung, D. I. N. (2010). DIN EN 14774-1: Determination of moisture content – Oven dry method – Part 1: Total moisture – Reference method. Berlin: CEN.

Deutsches Institut Für Normung, D. I. N. (2010). DIN EN 15210-1: Solid biofuels – Determination of mechanical durability of pellets and briquettes – Part 1: Pellets. Berlim: CEN.

Escobar, J. F. (2016) A produção sustentável de biomassa florestal para energia no brasil: o caso dos pellets de madeira. Tese (Doutorado em Ciências). Universidade de São Paulo, São Paulo. https://teses.usp.br/teses/disponiveis/106/106131/tde-23032017-171758/es.php.

EU. Directive 2016/0382. Directive Of The European Parliament and Of The Council on the promotion of the use of energy from renewable sources (recast). Brussels, COM, 2016. https://ec.europa.eu/energy/sites/ener/files/documents/1_en_act_part1_v7_1.pdf.

Eufrade, H. D. J. J., Melo, R. X. D., Sartori, M. M. P., Guerra, S. P. S., & Ballarin, A.W. (2016). Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass and Bioenergy. 90, 15-21. https://doi.org/10.1016/j.biombioe.2016.03.037.

Filbakk, T., Skjevrak, G., Hoibo, O., Dibdiakova, J., & Jirjis, R. (2011). The influence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters. Fuel Processing Technology. 92 (5), 871-878. https://doi.org/10.1016/j.fuproc.2010.12.001.

Filbakk, T., Jirjis, R., Nurmi, J., & Hoibo, O. (2011). The effect of bark content on quality parameters of Scots Pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy. 35, 3342-3349. https://doi.org/10.1016/j.biombioe.2010.09.011.

Gillespie, G. D., Everard, C. D., Fawangan, C. C., & Mcdonnell, K. P. (2013). Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel. 111, 771-777. https://doi.org/10.1016/j.fuel.2013.05.002.

Gominho, J., Lourenço, A., Miranda, I., & Pereira, H. (2012). Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products. 39, 12-16. https://doi.org/10.1016/j.indcrop.2012.01.026.

Hansted, A. L. S., Nakashima, G. T., Martins, M. P., Yamamoto, H., & Yamaji, F. M. (2016). Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 184, 180-184. https://doi.org/10.1016/j.fuel.2016.06.071.

Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005.

Kaliyan, N., & Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101(3), 082-1090. https://doi.org/10.1016/j.biortech.2009.08.064.

Keene, W. C., A. A. P., Pszenny, J. M., & Galloway, H. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal Geophysical Research. 91(D6), 6647-6658. https://doi-org.ez26.periodicos.capes.gov.br/10.1029/JD091iD06p06647.

Larsson, S. H., Thyrel, M., Geladi, P., & Lestander, T. A. (2008). High quality biofuel pellet production from pre-compacted low density raw materials. Bioresource Technology, 99, 7176-7182. https://doi.org/10.1016/j.biortech.2007.12.065.

Li, Y., Liu, H. (2000). High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19, 177-186. https://doi.org/10.1016/S0961-9534(00)00026-X.

Maraver, A. G., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F., & Zamorano, M. (2015). Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Processing Technology. 129, 1-7. https://doi.org/10.1016/j.fuproc.2014.08.018.

Mello, W. Z. (2001). Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro. Brazil. Environmental Pollution. 114, 35-242. https://doi.org/10.1016/S0269-7491(00)00209-8.

Monedero, E., Portero, H., & Lapuerta, M. (2015). Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology. 132, 15-23. https://doi.org/10.1016/j.fuproc.2014.12.013.

Moon, C., Sung, Y., Ahn, S., Kim, T., Choi, G., & Kim, D. (2013). Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Experimental Thermal and Fluid Science. 47, 232-240. https://doi.org/10.1016/j.expthermflusci.2013.01.019.

Obernberger, I., & Thek, G. (2010). The pellet handbook: the production and thermal utilization of biomass pellet. Freedom Collection Journals. 90 (10), 3122-3122. https://doi.org/10.1016/j.fuel.2011.04.034.

Paula, L. E. R. et al. (2011). Characterization of residues from plant biomass for use in energy generation. Cerne, Lavras, 17(2), 237-246. https://www-cabdirect.ez26.periodicos.capes.gov.br/cabdirect/FullTextPDF/2011/20113257004.pdf.

Pereira, B. L. (2014). Propriedades de pellets de diferentes biomassas para fins energéticos. Tese (Doutorado em Engenharia Florestal) – Universidade Federal de Viçosa, Viçosa. https://www.locus.ufv.br/bitstream/123456789/6843/1/texto%20completo.pdf.

Pereira, B. L. C., Carneiro, A. C. O., Carvalho, A. M. M. L., Vital, B. R., Oliveira, A. C., & Canal, W. D. (2016). Influência da adição de lignina kraft nas propriedades de pellets de eucalipto. Floresta, 46(2), 235-242. 10.5380/rf.v46i2.44936.

Poddar, S. et al. (2014). Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: higher heating value. Fuel. 131, 43-48. https://doi.org/10.1016/j.fuel.2014.04.061.

Protásio, T. P., Alves, I. C. N., Trugilho, P. F., Silva, V. O., & Baliza, A. E. R. (2011). Compactação de biomassa vegetal visando à produção de biocombustíveis sólidos. Pesquisa Florestal Brasileira. 31(68), 273-283. https://doi.org/10.4336/2011.pfb.31.68.273.

Protásio, T. P., Trugilho, P. F., Siqueira, H. F., Melo, I. C. N. A., Andrade, C. R., & Guimarães, J. B. J. (2015). Caracterização energética de pellets in natura e torrificados produzidos com madeira residual de Pinus. Pesquisa Florestal Brasileira, 35(84), 435-442. https://doi.org/10.4336/2015.pfb.35.84.843.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Riley, J. P., Chester, R. (1971). Introduction to marine chemistry. Academic Press, London and New York. 465. 10.1016/0160-9327(72)90020-8.

Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., & Santos-Cruz, J., Gutiérrez-Antonio, C. (2020). Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy. 145, 500-507. https://doi-org.ez26.periodicos.capes.gov.br/10.1016/j.renene.2019.06.048

Samuelsson, R., Larsson, S. H., Thyrel, M., & Lestander, T. A. (2012). Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Applied Energy. 109-115. https://doi.org/10.1016/j.apenergy.2012.05.004.

Schlesinger, W. H. (2018). Are wood pellets a green fuel? Science. 359, 1328-1329. 10.1126/science.aat2305.

Sette, C. R. J., Freitas, P. C., Freitas, V. P., Yamaji, F. M., & Almeida, R. A. (2016). Production and characterization of bamboo pellets. Bioscience journal. 32, 922-930. 10.14393/BJ-v32n4a2016-32948.

Sette, C. R. J., Hansted, A. L. S., Novaes, E., Lima, P. A. F., Rodrigues, A. C., Santos, D. R. S., & Yamaji, F. M. (2018). Energy enhancement of the eucalyptus bark by briquette production. Industrial Crops & Products, 122, 209-213. https://doi.org/10.1016/j.indcrop.2018.05.057.

Silva, S. B., Marina Arantes, D. C., Andrade, J. K. B., Andrade, C. R., Carneiro, A. C. O., & Protásio, T. P. (2020). Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renewable Energy. 147(1), 1870-1879. https://doi.org/10.1016/j.renene.2019.09.131

Siqueira, H. F. (2017). Efeito de aditivos na qualidade de pellets de madeira para uso energético. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Viçosa, Viçosa. https://locus.ufv.br//handle/123456789/21906.

Stelte, W., Holm, J. K., Sanadi, A. R., Barsberg, S., Ahrenfeldt, J., & Henriksen, U. B. (2011). A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy 35(2), 910-918.. https://doi.org/10.1016/j.biombioe.2010.11.003.

Shen, J., Zhu, S., Liu, H., Zhang, J., & Tan, J. (2010). The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion Management. 5, 983-987. https://doi.org/10.1016/j.enconman.2009.11.039.

Stumm, W., & Morgan, J. J. (1970). Aquatic Chemistry – An Introduction Emphasizing Chemical Equilibria in Natural Waters, John Wiley & Sons,583, New York. 10.1126/science.172.3988.1124-a.

Technical Association Of The Pulp and Paper Industry, T. A. P. P. I. (1997). TAPPI T 204 cm-97. Solvent extractives of wood and pulp, 4 p.

Technical Association Of The Pulp and Paper Industry, T. A. A. P. I. (2002). TAPPI. T 222 om-02. Acid-insoluble lignin in wood and pulp, 5 p.

Telmo, C., & Lousada, J. (2011). Heating values of wood pellets from different species. Biomass and Bioenergy. 35, 2634-2639. 10.1016/j.biombioe.2011.02.043.

Tumuluru, J. S. et al. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. 5(6), 683-707. 10.1002/bbb.324.

Tumuluru, J. S., Conner, C. C., & Hoover, A. N. (2016). Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mil. J. Vis. Exp., 54092. 10.3791/54092.

Van Loo, S., & Koppejan, J. (2009). Handbook of Biomass Combustion and Co-firing. Applied Energy. 2, 1-442. 10.1016/j.apenergy.2008.11.022.

Zamorano, M., Popov, V., Rodríguez, M. L., & García-Maraver, A. (2011). A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable Energy. 6(11), 3133-3140. https://doi.org/10.1016/j.renene.2011.03.020.

Whittaker, C., & Shield, I. (2017). Factors affecting wood, energy grass and straw pellet durability – a review. Renew. Sust. Energ. Rev., 71, 1-11. https://doi.org/10.1016/j.rser.2016.12.119.

Wongsiriamnuay, T., & Tippayawong, N. (2015). Effect of densification parameters on the properties of maize residue pellets. Biosystems Engineering. 139, 111-20. https://doi.org/10.1016/j.biosystemseng.2015.08.009.

Downloads

Publicado

28/04/2022

Como Citar

CARVALHO, N. T. da S. .; SIMETTI, R.; TRUGILHO, P. F.; BIANCHI, M. L.; MAGALHÃES, M. A. de .; CARNEIRO, A. de C. O. Propriedades da matéria-prima e de pellets produzidos com misturas de madeiras de reflorestamento. Research, Society and Development, [S. l.], v. 11, n. 6, p. e30411629070, 2022. DOI: 10.33448/rsd-v11i6.29070. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29070. Acesso em: 17 ago. 2024.

Edição

Seção

Ciências Agrárias e Biológicas