Modelos experimentais para indução de lesão muscular em roedores: uma revisão de literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v11i7.30133

Palavras-chave:

Modelos experimentais; Modelo animal; Lesões e feridas; Musculoesquelético; Camundongos.

Resumo

Objetivo: O presente estudo tem como objetivo evidenciar as técnicas de lesão muscular mais recorrentes na literatura. Metodologia: Trata-se de uma pesquisa bibliográfica do tipo revisão integrativa da literatura. Os artigos foram pesquisados no ano de 2021, no período de 22 a 24 de novembro, na base de dados PubMed, usando os critérios de elegibilidade. Resultados e Discussão: De acordo com a estratégia de busca utilizada neste estudo, da totalidade dos artigos apenas 28 estudos atenderam os critérios de elegibilidade. Ao analisar as revistas de publicação, observa-se que as mais recorrentes foram PLoS One (7.14%), Int J Med Sci (7.14%), e J Trauma Acute Care com (7.14%). Evidenciou-se também, que o número de publicações sobre a temática vem crescendo ao longo dos anos, quando compara o ano de 2016 (10.71%) com anos posteriores, exceto em 2019 com o mesmo percentual de 10.71% e 2021 com zero publicação. As raças mais utilizadas nos experimentos foram Sprague-Dawley (32.14%) e Wistar com 25%. Houve uma predominância dos modelos por contusão (35.71%), seguido da lesão por uso excessivo (10.71%), e por lesão traumática (10.71%), para indução de lesão muscular em roedores. Conclusão: Conforme os resultados desta revisão, os modelos de indução de lesão muscular mais recorrente foi a lesão por contusão, seguido da lesão por uso excessivo, e por lesão traumática. Porém, todas as técnicas abordadas no presente estudo conseguiram reproduzir com excelência o mecanismo de injúria muscular.

Referências

Andrade, R. M..; Gagliardi, J. F. L.; Kiss, M. A. P. D. (2007). Relação entre índices de muscularidade e o desempenho do salto vertical. Revista brasileira de ciência e movimento, 15 (1), 61-7.

Aurora, A.; Roe, J. L..; Umoh, N. A.; Dubick, M. et al. (2018). Fresh whole blood resuscitation does not exacerbate skeletal muscle edema and long-term functional deficit after ischemic injury and hemorrhagic shock. J Trauma Acute Care Surg, 84 (5), 786-794.

Balasubramaniam, A.; Sheriff, S.; Friend, L. A.; James, J. H. (2018). Phosphodiesterase 4B knockout prevents skeletal muscle atrophy in rats with burn injury. Am J Physiol Regul Integr Comp Physiol, 315 (2), R429-r433.

Barbe, M. F.; Hilliard, B. A..; Amin, M.; Harris, M. Y. et al. (2020). Blocking CTGF/CCN2 reduces established skeletal muscle fibrosis in a rat model of overuse injury. Faseb j, 34 (5), 6554-6569.

Barbe, M. F.; Hilliard, B. A.; Fisher, P. W..; White, A. R. et al. (2020a). Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res, 61 (6), 604-619.

Barros, V. J. da S., Pereira, M. M. L., Silvino, V. O., Severo, J. S., Silva, M. S. da., & Sousa, B. L. S. C. (2020). Efeito da suplementação de resveratrol no dano muscular em modelo animal: uma revisão integrativa. Pesquisa, Sociedade e Desenvolvimento, 9 (11), e73591110568.

Botelho, L. L. R., Cunha, C. C. A. & Macedo, M. (2011). O método da revisão integrativa nos estudos organizacionais. Gestão Soc., 5(11), 121-136.

Chiaramonti, A. M.; Robertson, A. D.; Nguyen, T. P..; Jaffe, D. E. et al. (2017). Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model. J Bone Joint Surg Am, 99 (21), 1851-1858.

Chongsatientam, A.; Yimlamai, T. (2016). Therapeutic Pulsed Ultrasound Promotes Revascularization and Functional Recovery of Rat Skeletal Muscle after Contusion Injury. Ultrasound Med Biol, 42 (12), 2938-2949.

Dantas, M. G. B.; Damasceno, C. M. D.; Barros, V. R. P.; Menezes, E. S. et al. (2017). Creation of a contusion injury method for skeletal muscle in rats with differing impacts. Acta Cir Bras, 32 (5), 369-375.

Dos Santos Haupenthal, D. P.; Zortea, D.; Zaccaron, R. P.; De Bem Silveira, G. et al. (2020). Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury. Mater Sci Eng C Mater Biol Appl, 110, 110681.

Ferreira, L. M.; Hochman, B.; Barbosa, M. V. J. (2005). Experimental model in research. Acta cirúrgica brasileira. 20 (2), 28-34.

Fernandes, T. L.; Pedrinelli, A.; Hernandez, A. J. (2011). Muscle injury – physiopathology, diagnostic, treatment and clinical presentation. Rev Bras Ortop, 46 (3), 247-55.

Filho, C. M. F.; Silva, A. M. S.; Sudo, R. T. S.; Takiya, C. M.; Machado, J. C. (2015). Laceration in rat gastrocnemius. Following-up muscle repairing by ultrasound biomicroscopy (in vivo), contractility test (ex vivo) and histopathology. Acta Cirúrgica Brasileira, 30 (1), 13.

Fleming, I. D.; Krezalek, M. A.; Belogortseva, N.; Zaborin, A. et al. (2017). Modeling Acinetobacter baumannii wound infections: The critical role of iron. J Trauma Acute Care Surg, 82 (3), 557-565.

Herring, S. A. & Nilson, K. L. (1987). Introduction to overuse injuries. Clin Sports Med. 6 (2), 225-39.

Hochman, B.; Ferreira, L. M.; Vilas Boas, F. C. & Mariano, M. (2004). Experimental model in hamsters (Mesocricetus auratus) to study heterologous graft of scars and cutaneous deseases in plastic surgery. Acta Cirúrgica Brasileira [online]. 19 (1), 69-78.

Hsu, Y. J..; Ho, C. S.; Lee, M. C.; Ho, C. S. et al. (2020). Protective Effects of Resveratrol Supplementation on Contusion Induced Muscle Injury. Int J Med Sci, 17 (1), 53-62.

Järvinen, M. J. & Lehto, M. U. (1993). The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med (Auckland, N.Z.), 15 (2),

-89.

Kawada, S.; Harada, A. & Hashimoto, N. (2017). Impairment of cold injury-induced muscle regeneration in mice receiving a combination of bone fracture and alendronate treatment. PLoS One, 12 (7), e0181457.

Kobayashi, M.; Ota, S.; Terada, S.; Kawakami, Y. et al. (2016). The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries. Am J Sports Med, 44 (12), 3252-3261.

Lee, J. E.; Shah, V. K.; Lee, E. J.; Oh, M. S. et al. (2019). Melittin - A bee venom component - Enhances muscle regeneration factors expression in a mouse model of skeletal muscle contusion. J Pharmacol Sci, 140 (1), 26-32.

Luiz, L. M. F. & Ferreira, R. K. (2003). Experimental model: historic and conceptual revision. Acta Cirúrgica Brasileira [online]. 18 (spe), 01-03.

Martins, R. P.; Hartmann, D. D.; De Moraes, J. P.; Soares, FA. et al. (2016). Platelet-rich plasma reduces the oxidative damage determined by a skeletal muscle contusion in rats. Platelets, 27 (8), 784-790.

Matheus, J. P. C.; Oliveira, F. B., Gomide, L. B.; Milani, J. G. P. O.; Volpon, J. B. & Shimano, A. C. (2008). Efeitos do ultra-som terapêutico nas propriedades mecânicas do músculo esquelético após contusão. Rev Bras Fisioter, 12 (3), 241-7.

Murata, I.; Kawanishi, R.; Inoue, S.; Iwata, M. et al. (2019). A novel method to assess the severity and prognosis in crush syndrome by assessment of skin damage in hairless rats. Eur J Trauma Emerg Surg, 45 (6), 1087-1095.

Nuutila, K.; Sakthivel, D.; Kruse, C.; Tran, P. et al. (2017). Gene expression profiling of skeletal muscle after volumetric muscle loss. Wound Repair Regen, 25 (3), 408-413.

Patsalos, A.; Pap, A.; Varga, T.; Trencsenyi, G. et al. (2017). In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol, 595 (17), 5815-5842.

Ramos, L.; Marcos, R. L.; Torres-Silva, R.; Pallota, R. C. et al. (2018). Characterization of Skeletal Muscle Strain Lesion Induced by Stretching in Rats: Effects of Laser Photobiomodulation. Photomed Laser Surg, 36 (9), 460-467.

Rana, S.; Sieck, G. C. & Mantilla, C. B. (2017). Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats. J Neurophysiol, 117 (2), 545-555.

Settelmeier, S.; Schreiber, T.; Mäki, J.; Byts, N. et al. (2020). Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS One, 15 (5), e0233261.

Sloboda, D. D..; Brown, L. A. & Brooks, S. V. (2018). Myeloid Cell Responses to Contraction-induced Injury Differ in Muscles of Young and Old Mice. J Gerontol A Biol Sci Med Sci, 73 (12), 1581-1590.

Song, D. H.; Kim, M. H.; Lee, Y. T.; Lee, J. H. et al. (2018). Effect of high frequency electromagnetic wave stimulation on muscle injury in a rat model. Injury, 49 (6), 1032-1037.

Sun, J. H.; Zhu, X. Y.; Dong, T. N.; Zhang, X. H. et al. (2017). An "up, no change, or down" system: Time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int, 272, 104-110.

Takhtfooladi, H. A. & Takhtfooladi, M. A. (2019). Effect of curcumin on lung injury induced by skeletal muscle ischemia/reperfusion in rats. Ulus Travma Acil Cerrahi Derg, 25 (1), 7-11.

The Oxford Dictionary and Thesaurus. (1996). 3 rd ed. New York: Oxford University Press. Model; 960.

Thirupathi, A.; Freitas, S.; Sorato, HR.; Pedroso, GS. et al. (2018). Modulatory effects of taurine on metabolic and oxidative stress parameters in a mice model of muscle overuse. Nutrition, 54, 158-164.

Wang, J.; Zhu, G.; Wang, X.; Cai, J. et al. (2020). An injectable liposome for sustained release of icariin to the treatment of acute blunt muscle injury. J Pharm Pharmacol, 72 (9), 1152-1164.

Wu, S. H..; Lu, I. C.; Tai, M. H.; Chai, C. Y. et al. (2020). Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci, 17 (1), 30.

Downloads

Publicado

27/05/2022

Como Citar

SANTOS, P. W. da S. .; SANTOS, T. C. P. dos .; HAZIME, F. A. .; FILGUEIRAS, M. de C. . Modelos experimentais para indução de lesão muscular em roedores: uma revisão de literatura. Research, Society and Development, [S. l.], v. 11, n. 7, p. e35011730133, 2022. DOI: 10.33448/rsd-v11i7.30133. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30133. Acesso em: 30 jun. 2024.

Edição

Seção

Artigos de Revisão