Caracterização e otimização das propriedades de textura de iogurte sem gordura: perfil de textura intrumental e propriedades reológicas

Autores

DOI:

https://doi.org/10.33448/rsd-v11i8.31457

Palavras-chave:

Reologia; Tranglutaminase; Caseína; Iogurte concentrado; Modelagem.

Resumo

A gordura do leite desempenha um papel importante na textura do iogurte. Assim, a produção de iogurte sem gordura é um desafio para a indústria de alimentos. Nesse sentido, objetivou-se investigar e modelar o efeito da composição do iogurte e dos parâmetros do processo nas propriedades da textura obtidas por meio da análise do perfil da textura (TPA) e do estudo reológico. O experimento foi conduzido segundo Delineamento Box-Behnken (DBB) com três fatores: velocidade de rotação da centrífuga (CRS) (3000, 4250 e 5500 rpm), concentração de caseína (Cas) (3,4, 4,9 e 6,4% p/v) e de enzima transglutaminase (TgE) (0, 1 e 2 U/g de proteína). O modelo completo de segunda ordem explicou melhor o efeito dos fatores nas propriedades da textura. Para otimização simultânea das variáveis respostas, foi utilizada a função desejabilidade (firmeza, coesão e viscosidade aparente ao ponto de máximo, enquanto a adesividade, gomosidade, tixotropia e tangente de perda (tan δ) ao ponto de mínimo). Os resultados sugerem que a adição de TgE teve menor efeito nas propriedades de textura. Os valores otimizados de cada fator Cas, TgE e CRS foram, respectivamente, 3,4%, 1 U/g de proteína e 5500 rpm com desejabilidade geral (D) de 0,6531. Nestas condições, é possível preparar um iogurte concentrado sem gordura com maior teor proteico devido à concentração obtida após centrifugação, bem como obter características de textura desejáveis, tais como maior firmeza e consistência e menor gomosidade e adesividade.

Biografia do Autor

Laís Fernanda Batista, Universidade Federal de Viçosa

Postgraduate student from Food Science and Technology, Department of Food Technology. Federal University of Viçosa (UFV) – MG

Mariana Ferreira Silva, Universidade Federal de Viçosa

Food Engineering, Department of Food Technology, Federal University of Viçosa (UFV) – MG

Manoela Maciel dos Santos Dias, Centro Universitário de Viçosa

Professor form the Chemical Engineering in Centro Universitário de Viçosa- UNIVIÇOSA - MG.

Nilda de Fátima Ferreira Soares, Universidade Federal de Viçosa

Professor from the Department of Food Technology, Federal University of Viçosa (UFV) – MG. She has experience in the area of Food Science and Technology, working mainly on the following topics: active packaging, smart packaging, food preservation, as well as texture profile analysis.

Ana Clarissa dos Santos Pires, Universidade Federal de Viçosa

Professor from the Department of Food Technology, Federal University of Viçosa (UFV) – MG. She has experience in food science and technology, with emphasis on chemistry and physicochemistry of milk and dairy products.

Referências

Abou-Soliman, N. H. I., Sakr, S. S., Awad, S., Aloğlu, H. Ş., Özcan, Y., Karasu, S., Çetin, B., Sağdiç, O., Cadavid, A. M., Bohigas, L., Toldrà, M., Carretero, C., Parés, D., Saguer, E., Chen, L., Li, Y., Han, J., Yuan, D., Lu, Z., … Walker, G. (2016). Textural properties of low-fat set-type yoghurt depending on mTG addition. Mljekarstvo, 66(3), 225–230.

Amani, E., Hadi, M., & Shahram, E. (2017). The effect of proteolytic activity of starter cultures on technologically important properties of yogurt. May 2016, 525–537.

Agarwal, S., Robert, L.W., Patel, S., & Patel, H. (2015). Innovative Uses of Milk Protein Concentrates in Product Development. Journal of Food Science, 80(S1), A23-A29.

Aprodu, I., Gurau, G., Ionescu, A., & Banu, I. (2011). The effect of transglutaminase on the rheological properties of yogurt. Scientific Study & Research. Chemistry & Chemical Engineering, 12 (2), 185-196.

Aprodu, I.; Masgras, C. E.; & Banu, I. (2012). Effect of transglutaminase treatment on skimmed yogurt properties. Annals of the University Dunarea de Jos of Galati, Fascicle VI: Food Technology, 36 (2), 20–30.

Barros, S. L., Santos, N. C., Almeida, R. D., Alcâ, V. H. de, Alves, I. L., Gomes, J. P., Almeida, L. J., Luiz, R., Priscila, A., & Nascimento, S. (2020). Physical-chemical Evaluation and Texture Profile of Yoghurts Supplemented with Achachairu Pulp (Garcinia humilis). 8(1), 101–110.

Bong, D. D.; & Moraru, C. I. (2014). Use of micellar casein concentrate for Greek-style yogurt manufacturing: Effects on processing and product properties. Journal of Dairy Science, 97, (3), 1259–1269.

BRASIL. Ministério da Agricultura e do Abastecimento. Secretaria Nacional de Defesa Agropecuária. Instrução Normativa nº 46, de 23 de outubro de 2007. Regulamento Técnico de Identidade e Qualidade de Leites fermentados.

BRASIL. Ministério da Agricultura e do Abastecimento. Secretaria Nacional de Defesa Agropecuária. Instrução Normativa nº 30, de 26 de junho de 2018. Estabelece como oficiais os métodos constantes do Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal.

Codex Alimentarius. (2011). Milk and milk products (2nd ed.). WHO and FAO.

Darnay, L., Koncz, A., Gelencsér, E., Pásztor-Huszár, K., & Friedrich, L. (2016). Textural properties of low-fat set-type yoghurt depending on mTG addition. Mljekarstvo, 66(3), 225–230.

Demirkaya, A. K., & Ceylan, Z. G. (2009). The effect of microbial transglutaminase on microbiological, chemical, textural and sensory properties of yogurt. Australian Journal of Dairy Technology, 64 (2), 171–176.

Derringer, G. and Suich, R. (1980) Simultaneous Optimization of Several Response Variables. Journal of Quality Technology, 12, 214-219

Domagała, J., Sady, M. Grega, T., & Najgebauer-Lejko, D. (2007). Changes in texture of yogurt from goat’s milk modified by transglu-taminase depending on pH of the milk. Biotechnology in Animal Husbandry, 23 (5-6–2), 171–178.

Gauche, C., Tomazi, T., Barreto, P. L. M., Ogliari, P. J., & Bordignon-Luiz, M. T. (2009). Physical properties of yoghurt manufactured with milk whey and transglutaminase. LWT - Food Science and Technology, 42(1), 239-243.

Gharibzahedi, S. M. T., & Chronakis, I. S. (2018). Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products. Food Chemistry, 245, 620–632.

Gomes, R. G., & Penna, A. L. B. (2009). Rheological and sensory characteristics of functional dairy beverages. Semina: Ciências Agrarias, 30(3), 629–646.

Granato, D., Ribeiro, J. C. B., Castro, I. A., & Masson, M. L. (2010). Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology. Food Chemistry, 121(3), 899–906. https://doi.org/10.1016/j.foodchem.2010.01.014

Güler, Z., & Park, Y. W. (2011). Evaluation of sensory properties and their correlation coefficients with physico-chemical indices in Turkish set – type yoghurts Correlations between sensory and chemical parameters of Turkish yoghurts. 1(1), 10–15. https://doi.org/10.4236/ojas.2011.11002

Iličić, M. D., Milanović, S. D., Carić, M. D., Dokić, L. P., & Kanurić, K. G. (2014). Effect of Transglutaminase on Texture and Flow Properties of Stirred Probiotic Yoghurt during Storage. Journal of Texture Studies, 45(1), 13–19. https://doi.org/10.1111/jtxs.12038

Karnopp, A. R., Oliveira, K. G., de Andrade, E. F., Postingher, B. M., & Granato, D. (2017). Optimization of an organic yogurt based on sensorial, nutritional, and functional perspectives. Food Chemistry, 233, 401–411. https://doi.org/10.1016/j.foodchem.2017.04.112

Körzendörfer, A., Schäfer, J., Hinrichs, J., & Nöbel, S. (2019). Power ultrasound as a tool to improve the processability of protein-enriched fermented milk gels for Greek yogurt manufacture. Journal of Dairy Science, 102(9), 7826–7837.

Kuraishi, C., Sakamoto, J., & Soeda, T. (1996) The Usefulness of Transglutaminasefor Food Processing. ACS Symposium Series, 637, 13– 38.

Laguna, L., Farrel, G., Bryant, M., Morina, A., & Sarkar, A. (2017). Relating rheology and tribology of commercial dairy colloids to sensory perception. Food and Function, 8(2), 563–573.

Laiho, S., Williams, R. P. W., Poelman, A., Appelqvist, I., & Logan, A. (2017). SC. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.01.017

Lobato-Calleros, C., Ramírez-Santiago, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. Journal of Food Engineering, 131, 110–115.

Macedo, J. A., & Sato, H. H. (2005). Propriedades e aplicações da transglutaminase microbiana em alimentos. Alimentos e Nutriçao, 16, 413–419.

Martins, I. M., Matos, M., Costa, R., Lopes-da-Silva, F., Pascoal, A., Estevinho, L. M., & Choupina, A. B. (2014). Transglutaminases: Recent achievements and new sources. In Applied Microbiology and Biotechnology (Vol. 98, Issue 16, pp. 6957–6964). Springer Verlag. https://doi.org/10.1007/s00253-014-5894-1

Milanović S., Iličić M., Djurić M., Carió M., Dokić, L. P., & Kanurić, K. G. (2009). Effect of transglutaminase and whey protein concentrate on textural characteristics of low-fat probiotic yoghurt. Milchwissenschaft, 64(4), 388-392.

Morr, C. v., & Ha, E. Y. W. (1993). Whey Protein Concentrates and Isolates: Processing and Functional Properties. Critical Reviews in Food Science and Nutrition, 33(6), 431–476. https://doi.org/10.1080/10408399309527643

Pakseresht, S., Mazaheri Tehrani, M., & Razavi, S. M. A. (2017). Optimization of low-fat set-type yoghurt: effect of altered whey protein to casein ratio, fat content and microbial transglutaminase on rheological and sensorial properties. Journal of Food Science and Technology, 54(8), 2351–2360. https://doi.org/10.1007/s13197-017-2675-8.

Pereira, E. P. R., Cavalcanti, R. N., Esmerino, E. A., Silva, R., Guerreiro, L. R. M., Cunha, R. L., Bolini, H. M. A., Meireles, M. A., Faria, J. A. F., & Cruz, A. G. (2016). Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit suisse cheese. Journal of Dairy Science, 99(3), 1762–1772. https://doi.org/10.3168/JDS.2015-9701

Pimentel, T. C., Antunes, A. E. C., Zacarchenco, P. B., Cortez, M. A. S., Bogsan, C. S. B., Oliveira, M. N., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2017). Brazilian yogurt-like products. Elsevier Inc.

Popović, L. M., Peričin, D. M., Vaštag, Ž. G., & Popović, S. Z. (2013). Optimization of Transglutaminase Cross-linking of Pumpkin Oil Cake Globulin; Improvement of the Solubility and Gelation Properties. Food and Bioprocess Technology, 6(4), 1105–1111. https://doi.org/10.1007/s11947-011-0673-9

Raak, N., Rohm, H., & Jaros, D. (2017). Cross-linking with microbial transglutaminase: Isopeptide bonds and polymer size as drivers for acid casein gel stiffness. International Dairy Journal, 66, 49–55.

Ramirez-santiago, C., Ramos-solis, L., Lobato-calleros, C., Peña-valdivia, C., & Vernon-carter, E. J. (2010). Enrichment of stirred yogurt with soluble dietary fiber from Pachyrhizus erosus L. Urban: Effect on syneresis, microstructure and rheological properties. Journal of Food Engineering, 101(3), 229–235. https://doi.org/10.1016/j.jfoodeng.2010.06.023

Rigo, E., Badia, V., Cavalheiro, D., Matuela, B. P., Morin, V. V., & Bianchi, A. E. (2016). Avaliação do efeito da adição de transglutaminase na sinerese e atributos reológicos do iogurte de leite ovino com calda de mamão (Carica papaya L.). Revista do Congresso Sul Brasileiro de Engenharia de Alimentos, 1, 1–9.

Rosa, Z., Galván, N., Soares, L. D. S., Antonio, E., Medeiros, A., Fátima, N. de, & Soares, F. (2018). Rheological Properties of Aqueous Dispersions of Xanthan Gum Containing Different Chloride Salts Are Impacted by both Sizes and Net Electric Charges of the Cations. 186–197.

Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT - Food Science and Technology, 65, 978–986. https://doi.org/10.1016/j.lwt.2015.09.027

Şanli, T., Sezgin, E., Deveci, O., Senel, E., & Benli, M. (2011). Effect of using transglutaminase on physical, chemical and sensory properties of set-type yoghurt. Food Hydrocolloids, 25(6), 1477–1481.

Sendra, E., Kuri, V., Fernández-López, J., Sayas-Barberá, E., Navarro, C., & Pérez-Alvarez, J. A. (2010). Viscoelastic properties of orange fiber enriched yogurt as a function of fiber dose, size and thermal treatment. LWT - Food Science and Technology, 43(4)708–714.

Shleikin, A. G., Zipaev, D. V., Zhilinskaya, N. T. Barakova, N. V., Danilov, N. P., & Argymbaeva, A. E. (2016). Structure properties of stirred yoghurt made with transglutaminase and Amaranth. Carpathian Journal of Food Science and Technology, 8 (2), 71–80.

Steffe, J. F. (1996). Rheological methods in food process engineering. 2a ed. Freeman Press: Michigan, 418.

Surber, G., Jaros, D., & Rohm, H. (2019). Shear and extensional rheology of acid milk gel suspensions with varying ropiness. Journal of Texture Studies, 1–9.

Tabilo-Munizaga, G., & Barbosa-Cánovas, G. V. (2004). Rheology for the food industry. Journal of Food Engineering, 67(1), 147–156.

Tamime, A. Y., Hickey, M., & Muir, D. D. (2014). Strained fermented milks - A review of existing legislative provisions, survey of nutritional labelling of commercial products in selected markets and terminology of products in some selected countries. International Journal of Dairy Technology, 67(3), 305–333. https://doi.org/10.1111/1471-0307.12147

Vidigal, M. C. T. R., Minim, V. P. R., Ramos, A. M., Ceresino, E. B., Diniz, M. D. M. S., Camilloto, G. P., & Minim, L. A. (2012). Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements. Food Science and Technology, 32(2), 412–418. https://doi.org/10.1590/s0101-20612012005000047

Yilmaz, M. T., Dertli, E., Toker, O. S., Tatlisu, N. B., Sagdic, O., & Arici, M. (2015). Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: An optimization study based on fermentation kinetics. Journal of Dairy Science, 98(3), 1604–1624.

Yeung, Y. K., Lee, Y. K., & Yoon Hyuk Chang. (2019). Physicochemical, microbia, and rheological properties of yogurt substituted with pectic polysaccharide extracted from Ulmus davidiana. December 2018, 1–11. https://doi.org/10.1111/jfpp.13907

Yu, H. Y., Wang, L., & McCarthy, K., L. (2016). Characterization of yogurts made with milk solids nonfat by rheological behavior and nuclear magnetic resonance spectroscopy. Journal of Food and Drug Analysis, 24(4), 804–812.

Zhang, L., Zhang, L., Yi, H., Du, M., Ma, C., Han, X., Feng, Z., Jiao, Y., & Zhang, Y. (2012). Enzymatic characterization of transglutaminase from Streptomyces mobaraensis DSM 40587 in high salt and effect of enzymatic cross- linking of yak milk proteins on functional properties of stirred yogurt. Journal Dairy, Science, 95, 3559–3568.

Downloads

Publicado

30/06/2022

Como Citar

BATISTA, L. F. .; SILVA, M. F. .; DIAS, M. M. dos S. .; SOARES, N. de F. F. .; PIRES, A. C. dos S. .; VIDIGAL, M. C. T. R. . Caracterização e otimização das propriedades de textura de iogurte sem gordura: perfil de textura intrumental e propriedades reológicas. Research, Society and Development, [S. l.], v. 11, n. 8, p. e59011831457, 2022. DOI: 10.33448/rsd-v11i8.31457. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31457. Acesso em: 25 dez. 2024.

Edição

Seção

Ciências Agrárias e Biológicas