Tratamento térmico de têmpera e partição: terceira geração dos aços avançados de alta resistência

Autores

DOI:

https://doi.org/10.33448/rsd-v11i10.31903

Palavras-chave:

Têmpera e partição; AHSS; Austenita retida.

Resumo

Este manuscrito tem por objetivo apresentar uma visão geral do tratamento térmico de têmpera e partição (Q&P) geralmente aplicado aos aços de transformação induzida por plasticidade (TRIP) e aços duplex (DP). Os aços TRIP e DP são a primeira geração dos aços avançados de alta resistência (AHSS). Os aços AHSS apresentam uma microestrutura multifásica que garante uma combinação vantajosa de resistência e ductilidade. O processo de tratamento térmico de Q&P tem por objetivo obter uma microestrutura composta por martensita e austenita retida, de modo a melhorar a relação resistência/ductilidade do aço AHSS. A austenita retida dos aços Q&P é rica em carbono e estável e temperatura ambiente. O processo de tratamento térmico implica em temperar o aço entre a temperatura de início de transformação martensítica, Ms, e a temperatura final da transformação martensítica, Mf. Por um processo de difusão, o carbono da martensita migra para a austenita retida. A estabilidade da austenita retida em temperatura ambiente melhora o desempenho mecânico do aço, uma vez que há um aumento em sua tenacidade e alongamento. Este controle ótimo da microestrutura originou a terceira geração dos AHSS e permite a redução de peso e a melhora nas propriedades mecânicas de peças automotivas feitas em aços TRIP e DP.

Referências

Allain, S. Y. P., Gaudez, S., Geandier, G., Hell, J. C., Gouné, M., Danoix, F., and Poulon-Quintin, A. (2018). Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments. Materials Science and Engineering: A, 710, 245-250.

Andrews, K. W. (1965). Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel Inst., 721-727.

Bhadeshia, H. K. D. H. (2001). Bainite in steels 2nd ed. The Institute of Materials, London.

Bhadeshia, H., and Edmonds, D. (1979). The bainite transformation in a silicon steel. Metallurgical Transactions A, 10, 895–907.

Bigg, T., Edmonds, D., and Eardley, E. (2013). Real-time structural analysis of quenching and partitioning (Q&P) in an experimental martensitic steel. Journal of Alloys and Compounds, 557S, S695-S698.

Caballlero, F., Allain, S., Cornide, J., Puerta -Velasquez, J., Garcia-Mateo, C., and Miller, M. (2013). Mater. Des., 49, 667-680.

Clarke, A., Miller, M., and Hackenberg, R. (2008). Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment. Acta Materialia, 56, 16-22.

Clarke, A., Speer, J., Matlock, D., Rizzo, F., Edmonds, D., and Santofimia, M. (2009). Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning. Scripta Materialia, 61, 149-152.

De Knijf, D., DaSilva, E., Föjer, C., and Petrov, R. (2015). Study of heat treatment parameters and kinetics of quenching and partitioning cycles. Materials Science and Technology, 31, 817-828.

De Moor, E., Föjer, C., Penning, J., Clarke, A., and Speer, J. (2010). Calorimetric study of carbon partitioning from martensite into austenite. Physical Review B. 82, 1-5.

De Moor, E., Lacroix, S., Samek, L., Penning, J., and Speer, J. (2006). Dilatometric Study of the Quench and Partitioning Process. The 3rd International Conference on Advanced Structural Steels. Gyeongju, Korea, august.

De Moor, E., Speer, J., Föjer, C., and Penning, J. (2009). Effect of Si, Al, Mo alloying on tensile properties obtaned by quenching and partitioning. Proceedings of Materials Science and Technology, 1554-1563.

De Moor, E., Speer, J., Matlock, D., Kwank, J., and Lee, S. (2011). Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels. ISII International, 51, 137-144.

Diego-Calderón, I., Sabirov, I., Molina-Aldagueria, J., Föjer, C., and Thiessen, R. (2016). Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture. Materials Science & Engineering A, 657, 136-146.

Edmonds, D., He, K., Rizzo, F., De Cooman, B., Matlock, D., and Speer, J. (2006). Quenching and partitioning of maternsite - a novel heat treatment. Materials Science and Engineering A, 438-440, 25-34.

Forrest, D. (2015). Quenching and partitioning process development to replace hot stamping of high- strength automotive steel. Factsheet: U.S. Department of Energy.

Gao, G., Zhang, B., Cheng, C., Zhao, P., Zhang, H., and Bai, B. (2016). Very high cicle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process. International Journal of Fatigue, 92, 203-210.

Gaudez, S., Teixeira, J., Allain, S. Y., Geandier, G., Gouné, M., Soler, M., & Danoix, F. (2018). Numerical Investigations of the Effects of Substitutional Elements on the Interface Conditions During Partitioning in Quenching and Partitioning Steels. Metallurgical and Materials Transactions A, 1-5.

Gerdemann, F. (2004). Microstructure and Hardness of 9260 Steel Heat-Treated by the Quenching and Partitioning Process. "Diploma Thesis", 2004, "Aachen University of Technology (RWTH) Germany.

Gouné, M., Danoix, F., Allain, S., and Bouaziz, O. (2013). Unambiguous carbon partitining from matensite to austenite in Fe-C-Ni alloys during quenching and partitioning. Scripta Materialia, 68, 1004-1007.

Hillert, M., & Ågren, J. (2004). On the definitions of paraequilibrium and orthoequilibrium. Scripta Materialia, 50(5), 697-699.

Kähkönen, J. (2016). Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions. Dissertation. Colorado School of Mines.

Kobayashi, J., Ina, D., Yoshikawa, N., and Sigimoto, K. (2012). Effects of the Addition of Cr, Mo and Ni on the Microstructure and Retained Austenite Characteristics of 0.2% C–Si–Mn–Nb Ultrahigh-strength TRIP-aided Bainitic Ferrite Steels. ISIJ International, 52, 1894-1901.

Kong, H., Chao, Q., Cai, M. H., Pavlina, E. J., Rolfe, B., Hodgson, P. D., and Beladi, H. (2018). Microstructure Evolution and Mechanical Behavior of a CMnSiAl TRIP Steel Subjected to Partial Austenitization Along with Quenching and Partitioning Treatment. Metallurgical and Materials Transactions A, 49(5), 1509-1519.

Koopmans, T. (2015). Thermal stability of retained austenite in Quenching and Partitioning steels. Master, 77p.: Faculty of Mechanical, Maritime and Materials Engineering / Delft University of Technology.

Lee, S., and Van Tyne, C. (2012). A kinetics model for martensite transformation in plain carbon and low-alloyed steels. Metallurgical and Materials Transactions A, 42, 442-427.

Liu, L., He, B. B., Cheng, G. J., Yen, H. W., & Huang, M. X. (2018). Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite. Scripta Materialia, 150, 1-6.

Lee, Y. K. (2002). Empirical formula of isothermal bainite start temperature of steels. Journal of Materials Science Letters, 21(16), 1253-1255.

Lovicu, G., Bagliani, E., DeSanctis, M., Dimatteo, A., Ishak, R., and Valentini, R. (2013). Hydrogen embrittlement of a medium carbon Q&P steel. La Metallugia Italiana, 6, 3-10.

Lu, X., Liu, H., and Jin, X. (de 2013). Preliminary study on kinetics of cabon partitioning in high Ni Q&P steel. Journal of Alloys and Compounds, 577S, S72-S75.

Luo, L., Li, W., Gong, Y., Wang, L., and Jin, X. (2017). Tensile behavior and deformation mechanism of quenching and partitioning treated steels at different deforming temperature. Journal of Iron and Steel Research, International, 24, 104-1108.

Masek, B., Jirková, H., Hauserova, D., Kucerova, L., and Klauberiva, D. (2010). The effect of Mn and Si on properties of advanced high strength steels processed by quenching and partitioning. Materials Science Forum, 654-656, 94-97.

Matas, S., and Hehemann, R. F. (1960). Retained austenite and the tempering of martensite. Nature, 187, 685–686.

Nishikawa, L., Melado, A.C., Goldenstein, H., Bauri, L.F., dos Santos Filho, D. and Nunes, E. (2016). Enhancing mechanical properties of ductile cast iron conrods through different heat treatments. (No. 2016-36-0360). SAE Technical Papers. SAE International.

Olson, G. B., and Cohen, M. (1975). Kinetics of strain-induced martensitic nucleation. Metallurgical transactions A, 6(4), 791.

Podder, A. S., Lonardelli, I., Molinari, A., and Bhadeshia, H. K. D. H. (2011). Thermal stability of retained austenite in bainitic steel: an in situ study. Proc. R. Soc. A, 467(2135), 3141-3156.

Rizzo, F., Martins, R., Speer, J., Matlock, D., Clarke, A., and DeCooman, B. (2007). Quenching and partitioning of Ni added high strength steels. Materials Science Forum. Trans Tech Publications, 539, 4476-4481.

Santofimia, M., Zhao, L., and Sietsma, J. (2009). Microstructural evolution of a low-carbon steel during application of quenching and parttioning heat treatments after partial austenitization. Metallurgical and Materials Transactions A, 40, 46-56.

Santofimia, M., Zhao, L., Petrov, R., and Sietsma, J. (2008). Characterization of the microstructure obtaned by the quenching and partitioning process in a low-carbon steel. Materials Characterization, 59, 1758-1764.

Seo, E., Cho, L., and Decooman, B. (2016). Modified metodology for quench temperature selection in quenching and partitioning (Q&P) processing of steels. Metallurgical and Materials Transactions A, 47A, 3797-3802.

Speer, J., Matlock, D., De Cooman, B., and Schroth, J. C. (2003). Carbon partitioning into austenite after martensite transformation. Acta Materialia, 51, 2611-2622.

Toji, Y., Miyamoto, G., and Raabe, D. (2015). Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta Materialia, 86, 137-147.

Tsuchiyama, T., Tobata, J., Tao, T., Nakada, N., and Takaki, S. (2012, 532). Quenching and partitioning treatment of a low-crbon martensitic stainless steel. Materials Science and Engineering A, 532, 585-592

Wang, C., Shi, J., Cao, W., and Dong, H. (2010). Characterization of microstruture obtained by quenching and partitioning process in low alloy martensitic steel. Materials Science and Engineering A, 527, 3442-3449.

Wu, R., Li, W., Wang, C., Xiao, Y., Wang, L., and Jin, X. (2015). Stability of retained austenite through a combined intercritical anneling and quenching and partitioning (IAQP) treatment. Acta Metall. Sin. (Engl. Lett.), 28, 286-393.

Yang, Y., Huang, F., Guo, Z., Rong, Y., and Chen, N. (2016). Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Materials Science and Engineering A, 665, 76-85.

Zhao, Z. Z., Liang, J. H., Zhao, A. M., Liang, J. T., Tang, D., and Gao, Y. P. (2017). Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system. Journal of Alloys and Compounds, 691, 51-59.

Zinsaz-Borujerdi, A., Zarei-Hanzaki, A., Abedi, H. R., Karam-Abian, M., Ding, H., Han, D., and Kheradmand, N. (2018). Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process. Materials Science and Engineering: A, 725, 341-349.

Downloads

Publicado

03/08/2022

Como Citar

PENHA, R. N.; MARINS, Y. F. S. Tratamento térmico de têmpera e partição: terceira geração dos aços avançados de alta resistência. Research, Society and Development, [S. l.], v. 11, n. 10, p. e346111031903, 2022. DOI: 10.33448/rsd-v11i10.31903. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31903. Acesso em: 23 nov. 2024.

Edição

Seção

Engenharias