Estudos recentes sobre compósitos de carboidratos para inibição da corrosão: uma revisão sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v11i9.32021

Palavras-chave:

Revisão sistemática; Biopolímeros; Carboidratos; Inibição da corrosão.

Resumo

Os biopolímeros de carboidratos constituem uma das alternativas ecológicas em relação a outros inibidores de corrosão orgânicos com potencial tóxico. Na inibição de corrosão eles representam um conjunto de compostos quimicamente estáveis, biodegradáveis e ecologicamente corretos, com forças de inibição confiáveis para proteção de superfícies metálicas, tornando-os revestimentos de proteção de metais eficazes. Portanto, este artigo apresenta uma revisão sistemática de biopolímeros de carboidratos utilizados como inibidores de corrosão desde 2018. A investigação seguiu o protocolo PRISMA, que fornece um resumo meticuloso de todas as pesquisas primárias disponíveis em resposta a uma pergunta de pesquisa. Depois de incluir/excluir etapas, quarenta e cinco estudos foram incluídos na revisão. Os resultados são apresentados enfocando os tipos de biopolímeros avaliados, como Quitosana, Dextrano, Celulose, e Goma Arábica, além disso os metais analisados, os meios utilizados para aceleração do processo de corrosão, o tipo de inibidor e a eficiência atingida em cada estudo também foram apresentados. Em suma, essa metodologia ajudou a identificar as principais lacunas de conhecimento nessa área.

Referências

An, Y., Jiang, G., Ren, Y., Zhang, L., Qi, Y., & Ge, Q. (2015). An environmental friendly and biodegradable shale inhibitor based on chitosan quaternary ammonium salt. Journal of Petroleum Science and Engineering, 135, 253–260. https://doi.org/10.1016/j.petrol.2015.09.005

Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Mazumder, M. A. J., & Singh, A. (2020). Chitosan Schiff base: an environmentally benign biological macromolecule as a new corrosion inhibitor for oil & gas industries. International Journal of Biological Macromolecules, 144, 305–315. https://doi.org/10.1016/j.ijbiomac.2019.12.106

Antony, R., Arun, T., & Manickam, S. T. D. (2019). A review on applications of chitosan-based Schiff bases. International Journal of Biological Macromolecules, 129, 615–633. https://doi.org/10.1016/j.ijbiomac.2019.02.047

Anush, S. M., Vishalakshi, B., Kalluraya, B., & Manju, N. (2018). Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological Macromolecules, 119, 446–452. https://doi.org/10.1016/j.ijbiomac.2018.07.129

Ashassi-Sorkhabi, H., & Kazempour, A. (2020). Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: A comprehensive review. Carbohydrate Polymers, 237(March), 116110. https://doi.org/10.1016/j.carbpol.2020.116110

Avérous, L., & Pollet, E. (2012). Environmental Silicate Nano-Biocomposites. Green Energy and Technology, 50. https://doi.org/10.1007/978-1-4471-4108-2

Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. Bin, & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. In International Journal of Biological Macromolecules (Vol. 185, pp. 832–848). https://doi.org/10.1016/j.ijbiomac.2021.07.023

Bahari, H. S., Ye, F., Carrillo, E. A. T., Leliopoulos, C., Savaloni, H., & Dutta, J. (2020). Chitosan nanocomposite coatings with enhanced corrosion inhibition effects for copper. International Journal of Biological Macromolecules, 162, 1566–1577. https://doi.org/10.1016/j.ijbiomac.2020.08.035

Baran, T., & Menteş, A. (2015). Cu(II) and Pd(II) complexes of water soluble O-carboxymethyl chitosan Schiff bases: Synthesis, characterization. International Journal of Biological Macromolecules, 79, 542–554. https://doi.org/10.1016/j.ijbiomac.2015.05.021

Biswas, A., Das, D., Lgaz, H., Pal, S., & Nair, U. G. (2019). Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: Electrochemical, surface morphological and theoretical studies. Journal of Molecular Liquids, 275, 867–878. https://doi.org/10.1016/j.molliq.2018.11.095

Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2011). Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes. Revista Eletrônica de Materiais e Processos, 6(2), 127–139. http://www.ncbi.nlm.nih.gov/pubmed/19998664

Carneiro, J., Tedim, J., Fernandes, S. C. M., Freire, C. S. R., Gandini, A., Ferreira, M. G. S., & Zheludkevich, M. L. (2013). Functionalized chitosan-based coatings for active corrosion protection. Surface and Coatings Technology, 226, 51–59. https://doi.org/10.1016/j.surfcoat.2013.03.035

Carneiro, J., Tedim, J., & Ferreira, M. G. S. (2015). Chitosan as a smart coating for corrosion protection of aluminum alloy 2024: A review. Progress in Organic Coatings, 89, 348–356. https://doi.org/10.1016/j.porgcoat.2015.03.008

Chai, C., Xu, Y., Shi, S., Zhao, X., Wu, Y., Xu, Y., & Zhang, L. (2018). Functional polyaspartic acid derivatives as eco-friendly corrosion inhibitors for mild steel in 0.5 M H2SO4 solution. RSC Advances, 8(44), 24970–24981. https://doi.org/10.1039/c8ra03534b

Chang, K. L. B., Tai, M. C., & Cheng, F. H. (2001). Kinetics and products of the degradation of chitosan by hydrogen peroxide. In Journal of Agricultural and Food Chemistry (Vol. 49, Issue 10, pp. 4845–4851). https://doi.org/10.1021/jf001469g

Charitha, B. P., Chenan, A., & Rao, P. (2017). Enhancement of Surface Coating Characteristics of Epoxy Resin by Dextran: An Electrochemical Approach. In Industrial and Engineering Chemistry Research (Vol. 56, Issue 5, pp. 1137–1147). https://doi.org/10.1021/acs.iecr.6b03274

Charitha, B. P., & Rao, P. (2018). Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies. International Journal of Biological Macromolecules, 112, 461–472. https://doi.org/10.1016/j.ijbiomac.2018.01.218

Chauhan, D. S., Ansari, K. R., Sorour, A. A., Quraishi, M. A., Lgaz, H., & Salghi, R. (2018). Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. International Journal of Biological Macromolecules, 107, 1747–1757. https://doi.org/10.1016/j.ijbiomac.2017.10.050

Chauhan, D. S., Mouaden, K. EL, Quraishi, M. A., & Bazzi, L. (2020). Aminotriazolethiol-functionalized chitosan as a macromolecule-based bioinspired corrosion inhibitor for surface protection of stainless steel in 3.5% NaCl. International Journal of Biological Macromolecules, 152, 234–241. https://doi.org/10.1016/j.ijbiomac.2020.02.283

Chauhan, D. S., Quraishi, M. A., & Qurashi, A. (2021). Recent trends in environmentally sustainable Sweet corrosion inhibitors. Journal of Molecular Liquids, 326, 115117. https://doi.org/10.1016/j.molliq.2020.115117

Chauhan, D. S., Quraishi, M. A., Sorour, A. A., Saha, S. K., & Banerjee, P. (2019). Triazole-modified chitosan: A biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution. RSC Advances, 9(26), 14990–15003. https://doi.org/10.1039/c9ra00986h

Cheng, S., Chen, S., Liu, T., Chang, X., & Yin, Y. (2007). Carboxymenthylchitosan as an ecofriendly inhibitor for mild steel in 1 M HCl. Materials Letters, 61(14–15), 3276–3280. https://doi.org/10.1016/j.matlet.2006.11.102

Chugh, B., Singh, A. K., Chaouiki, A., Salghi, R., Thakur, S., & Pani, B. (2020). A comprehensive study about anti-corrosion behaviour of pyrazine carbohydrazide: Gravimetric, electrochemical, surface and theoretical study. Journal of Molecular Liquids, 299, 112160. https://doi.org/10.1016/j.molliq.2019.112160

Chugh, B., Singh, A. K., Poddar, D., Thakur, S., Pani, B., & Jain, P. (2020). Relation of degree of substitution and metal protecting ability of cinnamaldehyde modified chitosan. Carbohydrate Polymers, 234, 115945. https://doi.org/10.1016/j.carbpol.2020.115945

Clavijo, S., Membrives, F., Quiroga, G., Boccaccini, A. R., & Santillán, M. J. (2016). Electrophoretic deposition of chitosan/Bioglass® and chitosan/Bioglass®/TiO2 composite coatings for bioimplants. Ceramics International, 42(12), 14206–14213. https://doi.org/10.1016/j.ceramint.2016.05.178

Clifford, A., Pang, X., & Zhitomirsky, I. (2018). Biomimetically modified chitosan for electrophoretic deposition of composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544(December 2017), 28–34. https://doi.org/10.1016/j.colsurfa.2018.02.028

Cui, G., Guo, J., Zhang, Y., Zhao, Q., Fu, S., Han, T., Zhang, S., & Wu, Y. (2019). Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution. Carbohydrate Polymers, 203, 386–395. https://doi.org/10.1016/j.carbpol.2018.09.038

Darmokoesoemo, H., Suyanto, S., Anggara, L. S., Amenaghawon, A. N., & Kusuma, H. S. (2018). Application of carboxymethyl chitosan-benzaldehyde as anticorrosion agent on steel. International Journal of Chemical Engineering, 2018. https://doi.org/10.1155/2018/4397867

Eduok, U., Ohaeri, E., & Szpunar, J. (2018). Electrochemical and surface analyses of X70 steel corrosion in simulated acid pickling medium: Effect of poly (N-vinyl imidazole) grafted carboxymethyl chitosan additive. Electrochimica Acta, 278, 302–312. https://doi.org/10.1016/j.electacta.2018.05.060

El-Sherbiny, I. M., Lins, R. J., Abdel-Bary, E. M., & Harding, D. R. K. (2005). Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. European Polymer Journal, 41(11), 2584–2591. https://doi.org/10.1016/j.eurpolymj.2005.05.035

EL. Mouaden, K., Chauhan, D. S., Quraishi, M. A., Bazzi, L., & Hilali, M. (2020). Cinnamaldehyde-modified chitosan as a bio-derived corrosion inhibitor for acid pickling of copper: Microwave synthesis, experimental and computational study. International Journal of Biological Macromolecules, 164, 3709–3717. https://doi.org/10.1016/j.ijbiomac.2020.08.137

El Mouaden, K., El Ibrahimi, B., Oukhrib, R., Bazzi, L., Hammouti, B., Jbara, O., Tara, A., Chauhan, D. S., & Quraishi, M. A. (2018). Chitosan polymer as a green corrosion inhibitor for copper in sulfide-containing synthetic seawater. International Journal of Biological Macromolecules, 119, 1311–1323. https://doi.org/10.1016/j.ijbiomac.2018.07.182

Fardioui, M., Rbaa, M., Benhiba, F., Galai, M., Guedira, T., Lakhrissi, B., Warad, I., & Zarrouk, A. (2021). Bio-active corrosion inhibitor based on 8-hydroxyquinoline-grafted-Alginate: Experimental and computational approaches. Journal of Molecular Liquids, 323, 114615. https://doi.org/10.1016/j.molliq.2020.114615

Farhadian, A., Assar Kashani, S., Rahimi, A., Oguzie, E. E., Javidparvar, A. A., Nwanonenyi, S. C., Yousefzadeh, S., & Nabid, M. R. (2021). Modified hydroxyethyl cellulose as a highly efficient eco-friendly inhibitor for suppression of mild steel corrosion in a 15% HCl solution at elevated temperatures. Journal of Molecular Liquids, 338, 116607. https://doi.org/10.1016/j.molliq.2021.116607

Farhadian, A., Varfolomeev, M. A., Shaabani, A., Nasiri, S., Vakhitov, I., Zaripova, Y. F., Yarkovoi, V. V., & Sukhov, A. V. (2020). Sulfonated chitosan as green and high cloud point kinetic methane hydrate and corrosion inhibitor: Experimental and theoretical studies. Carbohydrate Polymers, 236, 116035. https://doi.org/10.1016/j.carbpol.2020.116035

Figueiredo, E. P., & Meira, G. (2013). Corrosión de armadura de estructuras de hormigón. ALCONPAT Internacional - Associación Latinoamericana de Control de Calidad, Patología y Recuperación de La Construcción, 30.

Franchetti, S. M. M., & Marconato, J. C. (2006). Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos. Química Nova, 29(4), 811–816. https://doi.org/10.1590/s0100-40422006000400031

Gebhardt, F., Seuss, S., Turhan, M. C., Hornberger, H., Virtanen, S., & Boccaccini, A. R. (2012). Characterization of electrophoretic chitosan coatings on stainless steel. Materials Letters, 66(1), 302–304. https://doi.org/10.1016/j.matlet.2011.08.088

Giuliani, C., Pascucci, M., Riccucci, C., Messina, E., Salzano de Luna, M., Lavorgna, M., Ingo, G. M., & Di Carlo, G. (2018). Chitosan-based coatings for corrosion protection of copper-based alloys: A promising more sustainable approach for cultural heritage applications. Progress in Organic Coatings, 122(April), 138–146. https://doi.org/10.1016/j.porgcoat.2018.05.002

Gupta, N. K., Joshi, P. G., Srivastava, V., & Quraishi, M. A. (2018). Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. International Journal of Biological Macromolecules, 106, 704–711. https://doi.org/10.1016/j.ijbiomac.2017.08.064

Hasanin, M. S., & Al Kiey, S. A. (2020). Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions. International Journal of Biological Macromolecules, 161, 345–354. https://doi.org/10.1016/j.ijbiomac.2020.06.040

Hassan, R. M., Ibrahim, S. M., Takagi, H. D., & Sayed, S. A. (2018). Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor. Carbohydrate Polymers, 192, 356–363. https://doi.org/10.1016/j.carbpol.2018.03.066

Heise, S., Höhlinger, M., Hernández, Y. T., Palacio, J. J. P., Rodriquez Ortiz, J. A., Wagener, V., Virtanen, S., & Boccaccini, A. R. (2017). Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochimica Acta, 232, 456–464. https://doi.org/10.1016/j.electacta.2017.02.081

Hernández-Padrón, G., Rojas, F., & Castaño, V. (2006). Development and testing of anticorrosive SiO2/phenolic-formaldehydic resin coatings. Surface and Coatings Technology, 201(3–4), 1207–1214. https://doi.org/10.1016/j.surfcoat.2006.01.070

Izadi, M., Shahrabi, T., & Ramezanzadeh, B. (2018). Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers.pdf. Applied Surface Science, 491–505. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.01.185

Jena, G., Anandkumar, B., Vanithakumari, S. C., George, R. P., Philip, J., & Amarendra, G. (2020). Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications. Progress in Organic Coatings, 139, 105444. https://doi.org/10.1016/j.porgcoat.2019.105444

Joshi, J. M., & Sinha, V. K. (2007). Ceric ammonium nitrate induced grafting of polyacrylamide onto carboxymethyl chitosan. In Carbohydrate Polymers (Vol. 67, Issue 3, pp. 427–435). https://doi.org/10.1016/j.carbpol.2006.06.021

Koch, G. (2017). Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101105-8.00001-2

Kokalj, A., Behzadi, H., & Farahati, R. (2020). DFT study of aqueous-phase adsorption of cysteine and penicillamine on Fe(110): Role of bond-breaking upon adsorption. Applied Surface Science, 514(February), 145896. https://doi.org/10.1016/j.apsusc.2020.145896

Lai, X., Hu, J., Ruan, T., Zhou, J., & Qu, J. (2021). Chitosan derivative corrosion inhibitor for aluminum alloy in sodium chloride solution: A green organic/inorganic hybrid. Carbohydrate Polymers, 265, 118074. https://doi.org/10.1016/j.carbpol.2021.118074

Liu, J., Yu, Q., Yu, M., Li, S., Zhao, K., Xue, B., & Zu, H. (2018). Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024. Journal of Alloys and Compounds, 744, 728–739. https://doi.org/10.1016/j.jallcom.2018.01.267

Luo, X., Ci, C., Li, J., Lin, K., Du, S., Zhang, H., Li, X., Cheng, Y. F., Zang, J., & Liu, Y. (2019). 4-aminoazobenzene modified natural glucomannan as a green eco-friendly inhibitor for the mild steel in 0.5 M HCl solution. Corrosion Science, 151(November 2017), 132–142. https://doi.org/10.1016/j.corsci.2019.02.027

Ma, Z., Wang, W., Wu, Y., He, Y., & Wu, T. (2014). Oxidative degradation of chitosan to the low molecular water-soluble chitosan over peroxotungstate as chemical scissors. In PLoS ONE (Vol. 9, Issue 6). https://doi.org/10.1371/journal.pone.0100743

Macedo, R. G. M. de A., Marques, N. do N., Tonholo, J., & Balaban, R. de C. (2019). Water-soluble carboxymethylchitosan used as corrosion inhibitor for carbon steel in saline medium. Carbohydrate Polymers, 205, 371–376. https://doi.org/10.1016/j.carbpol.2018.10.081

Manawi, Y., Kochkodan, V., Mohammad, A. W., & Ali Atieh, M. (2017). Arabic gum as a novel pore-forming and hydrophilic agent in polysulfone membranes. In Journal of Membrane Science (Vol. 529, pp. 95–104). https://doi.org/10.1016/j.memsci.2017.02.002

Marzorati, S., Verotta, L., & Trasatti, S. P. (2019). Green corrosion inhibitors from natural sources and biomass wastes. Molecules, 24(1). https://doi.org/10.3390/molecules24010048

Mobin, M., Basik, M., & Aslam, J. (2018). Boswellia serrata gum as highly efficient and sustainable corrosion inhibitor for low carbon steel in 1 M HCl solution: Experimental and DFT studies. Journal of Molecular Liquids, 263, 174–186. https://doi.org/10.1016/j.molliq.2018.04.150

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & Group, P. (2015). Preferred reporting items for systematic review and meta-analysis protocols ( PRISMA-P ) 2015 statement. 4(1), 1–9. https://doi.org/10.1186/2046-4053-4-1

Nadi, I., Belattmania, Z., Sabour, B., Reani, A., Sahibed-dine, A., Jama, C., & Bentiss, F. (2019). Sargassum muticum extract based on alginate biopolymer as a new efficient biological corrosion inhibitor for carbon steel in hydrochloric acid pickling environment: Gravimetric, electrochemical and surface studies. International Journal of Biological Macromolecules, 141, 137–149. https://doi.org/10.1016/j.ijbiomac.2019.08.253

Negi, H., Verma, P., & Singh, R. K. (2021). A comprehensive review on the applications of functionalized chitosan in petroleum industry. Carbohydrate Polymers, 266. https://doi.org/10.1016/j.carbpol.2021.118125

Neves, R. M., Jr, H. L. O., Zattera, A. J., & Amico, S. C. (2021). Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review. Carbohydrate Polymers, 255, 1–17.

Nikpour, S., Ramezanzadeh, M., Bahlakeh, G., Ramezanzadeh, B., & Mahdavian, M. (2019). Eriobotrya japonica Lindl leaves extract application for effective corrosion mitigation of mild steel in HCl solution: Experimental and computational studies. Construction and Building Materials, 220, 161–176. https://doi.org/10.1016/j.conbuildmat.2019.06.005

Nwanonenyi, S., Ogbobe, O., Madufor, I., & Oguzie, E. (2016). Inhibitive Performance of Hydroxypropyl Cellulose and Potassium Iodide on the Corrosion of Mild Steel in Sulphuric Acid Environment. American Chemical Science Journal, 16(2), 1–12. https://doi.org/10.9734/acsj/2016/28250

O’Connor, A., Sargeant, J., & Wood, H. (2017). Systematic reviews. Veterinary Epidemiology: Fourth Edition, 397–420. https://doi.org/10.1002/9781118280249.ch19

Olivares, O., Likhanova, N. V., Gómez, B., Navarrete, J., Llanos-Serrano, M. E., Arce, E., & Hallen, J. M. (2006). Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. In Applied Surface Science (Vol. 252, Issue 8, pp. 2894–2909). https://doi.org/10.1016/j.apsusc.2005.04.040

Oliveira, J. A. M., de Santana, R. A. C., & Wanderley Neto, A. de O. (2020). Characterization of the chitosan-tungsten composite coating obtained by electrophoretic deposition. Progress in Organic Coatings, 143, 105631. https://doi.org/10.1016/j.porgcoat.2020.105631

Pais, M., George, S. D., & Rao, P. (2021). Glycogen nanoparticles as a potential corrosion inhibitor. International Journal of Biological Macromolecules, 182, 2117–2129. https://doi.org/10.1016/j.ijbiomac.2021.05.185

Pais, M., & Rao, P. (2020). Maltodextrin for corrosion mitigation of zinc in sulfamic acid: Electrochemical, surface and spectroscopic studies. International Journal of Biological Macromolecules, 145, 575–585. https://doi.org/10.1016/j.ijbiomac.2019.12.197

Pakseresht, A., Alizadeh, H., Hanaei, A., Heidarshenas, B., Shahbazkhan, A., & Ahmadi, N. P. (2018). The Effect of accelerator types on the phosphate Zn-%12Ni electrodeposite coating. Material Science & Engineering International Journal, 2(6). https://doi.org/10.15406/mseij.2018.02.00062

Pourhashem, S., Vaezi, M. R., Rashidi, A., & Bagherzadeh, M. R. (2017). Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corrosion Science, 115, 78–92. https://doi.org/10.1016/j.corsci.2016.11.008

Pozzo, L. de Y., Conceição, T. F. da, Spinelli, A., Scharnagl, N., & Nunes Pires, A. T. (2019). The influence of the crosslinking degree on the corrosion protection properties of chitosan coatings in simulated body fluid. Progress in Organic Coatings, 137, 105328. https://doi.org/10.1016/j.porgcoat.2019.105328

Raja, P. B., & Sethuraman, M. G. (2008). Natural products as corrosion inhibitor for metals in corrosive media - A review. Materials Letters, 62(1), 113–116. https://doi.org/10.1016/j.matlet.2007.04.079

Ramezanzadeh, B., Ghasemi, E., Mahdavian, M., Changizi, E., & Mohamadzadeh Moghadam, M. H. (2015). Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon, 93, 555–573. https://doi.org/10.1016/j.carbon.2015.05.094

Rani, B. E. A., & Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: An overview. International Journal of Corrosion, 2012(6), 16–25. https://doi.org/10.1155/2012/380217

Rbaa, M., Benhiba, F., Hssisou, R., Lakhrissi, Y., Lakhrissi, B., Touhami, M. E., Warad, I., & Zarrouk, A. (2021). Green synthesis of novel carbohydrate polymer chitosan oligosaccharide grafted on D-glucose derivative as bio-based corrosion inhibitor. Journal of Molecular Liquids, 322, 114549. https://doi.org/10.1016/j.molliq.2020.114549

Rbaa, M., Fardioui, M., Verma, C., Abousalem, A. S., Galai, M., Ebenso, E. E., Guedira, T., Lakhrissi, B., Warad, I., & Zarrouk, A. (2020). 8-Hydroxyquinoline based chitosan derived carbohydrate polymer as biodegradable and sustainable acid corrosion inhibitor for mild steel: Experimental and computational analyses. International Journal of Biological Macromolecules, 155, 645–655. https://doi.org/10.1016/j.ijbiomac.2020.03.200

Ribeiro, D. V., & Helene, P. (2013). Corrosão em Estruturas de Concreto: Teoria, Controle e Métodos de Análise. Elsevier, 1, 240 p. https://barnard.edu/sites/default/files/inline/student_user_guide_for_spss.pdf%0Ahttp://www.ibm.com/support%0Ahttp://www.spss.com/sites/dm-book/legacy/ProgDataMgmt_SPSS17.pdf%0Ahttps://www.neps-data.de/Portals/0/Working Papers/WP_XLV.pdf%0Ahttp://www2.psy

Sambyal, P., Ruhi, G., Dhawan, S. K., Bisht, B. M. S., & Gairola, S. P. (2018). Enhanced anticorrosive properties of tailored poly(aniline-anisidine)/chitosan/SiO2 composite for protection of mild steel in aggressive marine conditions. Progress in Organic Coatings, 119, 203–213. https://doi.org/10.1016/j.porgcoat.2018.02.014

Sangeetha, Y., Meenakshi, S., & SairamSundaram, C. (2015). Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride as inhibitor on mild steel. International Journal of Biological Macromolecules, 72, 1244–1249. https://doi.org/10.1016/j.ijbiomac.2014.10.044

Sharma, S. K., Peter, A., & Obot, I. B. (2015). Potential of Azadirachta indica as a green corrosion inhibitor against mild steel, aluminum, and tin: a review. Journal of Analytical Science and Technology, 6(1). https://doi.org/10.1186/s40543-015-0067-0

Shen, C., Alvarez, V., Koenig, J. D. B., & Luo, J. L. (2019). Gum Arabic as corrosion inhibitor in the oil industry: experimental and theoretical studies. Corrosion Engineering Science and Technology, 54(5), 444–454. https://doi.org/10.1080/1478422X.2019.1613780

Singh, P., Chauhan, D. S., Chauhan, S. S., Singh, G., & Quraishi, M. A. (2019). Chemically modified expired Dapsone drug as environmentally benign corrosion inhibitor for mild steel in sulphuric acid useful for industrial pickling process. Journal of Molecular Liquids, 286, 110903. https://doi.org/10.1016/j.molliq.2019.110903

Skale, S., Doleček, V., & Slemnik, M. (2007). Substitution of the constant phase element by Warburg impedance for protective coatings. Corrosion Science, 49(3), 1045–1055. https://doi.org/10.1016/j.corsci.2006.06.027

Solomon, M. M., Gerengi, H., Umoren, S. A., Essien, N. B., Essien, U. B., & Kaya, E. (2018). Gum Arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media. Carbohydrate Polymers, 181, 43–55. https://doi.org/10.1016/j.carbpol.2017.10.051

Solomon, M. M., Umoren, S. A., Obot, I. B., Sorour, A. A., & Gerengi, H. (2018). Exploration of Dextran for Application as Corrosion Inhibitor for Steel in Strong Acid Environment: Effect of Molecular Weight, Modification, and Temperature on Efficiency. ACS Applied Materials and Interfaces, 10(33), 28112–28129. https://doi.org/10.1021/acsami.8b09487

Solomon, M. M., Umoren, S. A., Udosoro, I. I., & Udoh, A. P. (2010). Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corrosion Science, 52(4), 1317–1325. https://doi.org/10.1016/j.corsci.2009.11.041

Sørbotten, A., Horn, S. J., Eijsink, V. G. H., & Vårum, K. M. (2005). Degradation of chitosans with chitinase B from Serratia marcescens. In FEBS Journal (Vol. 272, Issue 2, pp. 538–549). https://doi.org/10.1111/j.1742-4658.2004.04495.x

Srivastava, M., Srivastava, S. K., Nikhil, Ji, G., & Prakash, R. (2019). Chitosan based new nanocomposites for corrosion protection of mild steel in aggressive chloride media. International Journal of Biological Macromolecules, 140, 177–187. https://doi.org/10.1016/j.ijbiomac.2019.08.073

Tang, G., Ren, T., Yan, Z., Ma, L., Hou, X., & Huang, X. (2020). Preparation and anticorrosion resistance of a self-curing epoxy nanocomposite coating based on mesoporous silica nanoparticles loaded with perfluorooctyl triethoxysilane. Journal of Applied Polymer Science, 137(36), 1–11. https://doi.org/10.1002/app.49072

Tran, V. T., Lee, D. K., Kim, J., Jeong, K. J., Kim, C. S., & Lee, J. (2020). Magnetic Layer-by-Layer Assembly: From Linear Plasmonic Polymers to Oligomers. ACS Applied Materials and Interfaces, 12(14), 16584–16591. https://doi.org/10.1021/acsami.9b22684

Umoren, S. A., AlAhmary, A. A., Gasem, Z. M., & Solomon, M. M. (2018a). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules, 117, 1017–1028. https://doi.org/10.1016/j.ijbiomac.2018.06.014

Umoren, S. A., AlAhmary, A. A., Gasem, Z. M., & Solomon, M. M. (2018b). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules, 117, 1017–1028. https://doi.org/10.1016/j.ijbiomac.2018.06.014

Umoren, S. A., & Eduok, U. M. (2016). Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydrate Polymers, 140, 314–341. https://doi.org/10.1016/j.carbpol.2015.12.038

Umoren, S. A., Solomon, M. M., Madhankumar, A., & Obot, I. B. (2020). Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment. Carbohydrate Polymers, 230, 115466. https://doi.org/10.1016/j.carbpol.2019.115466

Urra Medina, E., & Barría Pailaquilén, R. M. (2010). Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare. Revista Latino-Americana de Enfermagem, 18(4), 824–831. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-11692010000400023&lng=en&nrm=iso&tlng=en%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/20922332

Verma, C., & Quraishi, M. A. (2021). Gum Arabic as an environmentally sustainable polymeric anticorrosive material: Recent progresses and future opportunities. International Journal of Biological Macromolecules, 184(April), 118–134. https://doi.org/10.1016/j.ijbiomac.2021.06.050

Vitório, J. A. P. (2003). Fundamentos da patologia das estruturas nas perícias de engenharia. Instituto Pernambucano de Avaliações e Perícias de Engenharia, 58. http://www.vitorioemelo.com.br/publicacoes/Fundamentos_Patologia_Estruturas_Pericias_Engenharia.pdf

Wei, H., Heidarshenas, B., Zhou, L., Hussain, G., Li, Q., & Ostrikov, K. (Ken). (2020). Green inhibitors for steel corrosion in acidic environment: state of art. Materials Today Sustainability, 10, 100044. https://doi.org/10.1016/j.mtsust.2020.100044

Wolynec, S. (2003). Técnicas Eletroquimicas de corrosão (EdUSP (ed.); 1a).

Yang, F., Liu, Y., Liu, T., Liu, S., & Zhao, H. (2019). Aniline trimer-including carboxymethylated β-cyclodextrin as an efficient corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. RSC Advances, 9(52), 30249–30258. https://doi.org/10.1039/c9ra04047a

Zhang, K., Yang, W., Xu, B., Chen, Y., Yin, X., Liu, Y., & Zuo, H. (2018). Inhibitory effect of konjac glucomanan on pitting corrosion of AA5052 aluminium alloy in NaCl solution. Journal of Colloid and Interface Science, 517, 52–60. https://doi.org/10.1016/j.jcis.2018.01.092

Zhang, K., Yang, W., Yin, X., Chen, Y., Liu, Y., Le, J., & Xu, B. (2018). Amino acids modified konjac glucomannan as green corrosion inhibitors for mild steel in HCl solution. Carbohydrate Polymers, 181, 191–199. https://doi.org/10.1016/j.carbpol.2017.10.069

Zhang, Q. H., Hou, B. S., Li, Y. Y., Zhu, G. Y., Lei, Y., Wang, X., Liu, H. F., & Zhang, G. A. (2021). Dextran derivatives as highly efficient green corrosion inhibitors for carbon steel in CO2-saturated oilfield produced water: Experimental and theoretical approaches. Chemical Engineering Journal, 424, 130519. https://doi.org/10.1016/j.cej.2021.130519

Zhang, W., Li, H. J., Chen, L., Zhang, S., Ma, Y., Ye, C., Zhou, Y., Pang, B., & Wu, Y. C. (2020). Fructan from Polygonatum cyrtonema Hua as an eco-friendly corrosion inhibitor for mild steel in HCl media. Carbohydrate Polymers, 238, 116216. https://doi.org/10.1016/j.carbpol.2020.116216

Zhang, W., Nie, B., Li, H. J., Li, Q., Li, C., & Wu, Y. C. (2021). Inhibition of mild steel corrosion in 1 M HCl by chondroitin sulfate and its synergistic effect with sodium alginate. Carbohydrate Polymers, 260, 117842. https://doi.org/10.1016/j.carbpol.2021.117842

Zhang, W., Wu, Y. C., & Li, H. J. (2021). Apostichopus japonicus polysaccharide as efficient sustainable inhibitor for mild steel against hydrochloric acid corrosion. Journal of Molecular Liquids, 321, 114923. https://doi.org/10.1016/j.molliq.2020.114923

Zhao, Q., Guo, J., Cui, G., Han, T., & Wu, Y. (2020). Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment. Colloids and Surfaces B: Biointerfaces, 194, 111150. https://doi.org/10.1016/j.colsurfb.2020.111150

Downloads

Publicado

14/07/2022

Como Citar

D’OLIVEIRA, M. C. de P. E. .; GUARDA, E. A.; GUARDA, P. M. .; SIDEL, S. M. . Estudos recentes sobre compósitos de carboidratos para inibição da corrosão: uma revisão sistemática. Research, Society and Development, [S. l.], v. 11, n. 9, p. e41811932021, 2022. DOI: 10.33448/rsd-v11i9.32021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32021. Acesso em: 28 set. 2024.

Edição

Seção

Artigos de Revisão