Hidrolisado Proteico de Mucosa Suína como estimulante alimentar para juvenis de tilápia do Nilo

Autores

DOI:

https://doi.org/10.33448/rsd-v11i9.32143

Palavras-chave:

Comportamento alimentar; Estimulante de sabor; Peptídeos de baixo peso molecular.

Resumo

Este trabalho teve como objetivo avaliar a inclusão do hidrolisado de mucosa suína (HMS) como estimulante de consumo em dietas para juvenis de tilápias. Para isso, foram utilizados 12 juvenis de tilápias, distribuídos em 12 aquários, onde foram realizadas gravações em vídeo para obter dados de atratividade e palatabilidade: (a) tempo de captura do primeiro pélete; (b) rejeição dos péletes pela tilápia; (c) aproximação sem ingestão; (d) percentual de ingestão; (e) tempo que a tilápia levou para consumir todos os péletes. Foram avaliados seis tratamentos em relação ao controle, sendo eles sem inclusão de HMS e de um a cinco por cento de inclusão do HMS. O tratamento com 1% de inclusão apresentou a maior ingestão dos péletes, e as demais variáveis não diferenças entre os tratamentos avaliados, porém em comparação com o controle, houve uma redução maior no consumo do tratamento com 3% de inclusão. Deste modo, sugere-se a inclusão de 1% do HMS para melhorar a palatabilidade da ração ofertada.

Referências

Al-Souti, A., Gallardo, W., Claereboudt, M., & Mahgoub, O. (2019). Attractability and palatability of formulated diets incorporated with chicken feather and algal meals for juvenile gilthead seabream, Sparus aurata. Aquaculture Reports, 14, 100199. https://doi.org/10.1016/j.aqrep.2019.100199.

Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T., & Kumarnsit, E. (2013). Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquaculture Nutrition, 19(5), 773-784. https://doi.org/10.1111/anu.12024.

Dieterich, F., Boscolo, W. R., Pacheco, M. T. B., Silva, V.; S. N., Gonçalves, G. S., & Vidotti, R. M. (2014). Development and characterization of protein hydrolysates originated from animal agro industrial byproducts. Journal of Dairy, Veterinary & Animal Research, 1(2), 1-7. https://doi.org/10.15406/jdvar.2014.01.00012.

FAO. 2020. The State of World Fisheries and Aquaculture (2020). Sustainability in action. Rome. https://doi.org/10.4060/ca9229en.

Hou, Y., Wu, Z., Dai, Z., Wang, G., & Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1), 1-13. https://doi.org/10.1186/s40104-017-0153-9.

Jingting, Y., Danting, G., Chun, K., Min, J., & Xueming, H. (2020). Effect of soybean antigenic protein on feed palatability of fishmeal replaced diets for obscure puffer (Takifugu fasciatus) and the alternation of diet preference by domestication. Aquaculture Reports, 17, 100332. https://doi.org/10.1016/j.aqrep.2020.100332.

Kasumyan, A. O., & DÖving, K. B. (2003). Taste preferences in fishes. Fish and fisheries, 4(4), 289-347. https://doi.org/10.1046/j.1467-2979.2003.00121.x.

Kasumyan, A. O., & Mouromtsev, G. E. (2020). The teleost fish, blue gourami Trichopodus trichopterus, distinguishes the taste of chemically similar substances. Scientific reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-64556-6.

Kasumyan, A. O., & Vinogradskaya, M. I. (2019). Palatability of bile substances for fish. Journal of Ichthyology, 59(4), 610-618. https://doi.org/10.1134/S0032945219040088.

Kasumyan, A., Isaeva, O., & Zvonareva, S. 2021. Coloration type of two allied cowries (Ovulidae: Gastropoda) tested through palatability evaluation in feeding experiments with fish. Journal of Experimental Marine Biology and Ecology, 538, 151529. https://doi.org/10.1016/j.jembe.2021.151529.

Kowalczewski, P. Ł., Olejnik, A., Rybicka, I., Zielińska-Dawidziak, M., Białas, W., & Lewandowicz, G. (2021). Membrane filtration-assisted enzymatic hydrolysis affects the biological activity of potato juice. Molecules, 26(4), 852. https://doi.org/10.3390/molecules26040852.

Levina, A. D., Mikhailova, E. S., & Kasumyan, A. O. (2021). Taste preferences and feeding behaviour in the facultative herbivorous fish, Nile tilapia Oreochromis niloticus. Journal of Fish Biology, 98(5), 1385-1400. https://doi.org/10.1111/jfb.14675.

Løkkeborg, S., Siikavuopio, S. I., Humborstad, O. B, A. C., Utne-Palm., & Ferter, K. (2014). Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits. Rev Fish Biol Fisheries 24, 985–1003. 10.1007/s11160-014-9360-z.

Mateos, G. G., Mohiti-Aslia, M., Bordab. E., Mirzaiea, S., & Frikhaa, M. (2014). Effect of inclusion of porcine mucosa hydrolysate in diets varying in lysine content on growth performance and ileal histomorphology of broilers. Animal Feed Science and Technology.187, 53– 60. http://dx.doi.org/10.1016/j.anifeedsci.2013.09.013

Mora, L., Reig, M., & Toldrá, F. (2014). Bioactive peptides generated from meat industry by-products. Food Research International, 65, 344-349. http://dx.doi.org/10.1016/j.foodres.2014.09.014.

National Research Council (NRC). (2011). Nutrient requirements of fish and shrimp. The national academies press, Washington, 379p.

Olséna, K. H., & Lundh, T. (2016). Feeding stimulants in an omnivorous species, crucian carp Carassius carassius (Linnaeus 1758). Aquaculture Reports 4, 66–73. http://dx.doi.org/10.1016/j.aqrep.2016.06.005.

Saadaoui, H., Espejo-Carpio, F. J., Guadix, E. M., Amar, R. B., & Pérez-Gálvez, R. (2019). Bi-objective optimization of tuna protein hydrolysis to produce aquaculture feed ingredients. Food and Bioproducts Processing, 115, 26-35. https://doi.org/10.1016/j.fbp.2019.03.001.

Shamushaki, V. A. J., Abtahi, B., & Kasumyan, A. O. (2011). Olfactory and taste attractiveness of free amino acids for Persian sturgeon juveniles, Acipenser persicus: a comparison with other acipenserids. Journal of Applied Ichthyology, 27(2), 241-245. https://doi.org/10.1111/j.1439-0426.2011.01687.x.

Soares, M., Rezende, P. C., Correa, N. M., Rocha, J. S., Martins, M. A., Andrade, T. C., Fracalossi, D. M., & do NascimentoVieira, F. (2020). Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports, 17, 100344. https://doi.org/10.1016/jaqrep.2020.100344.

Statsoft, Statistica (Data Analysis Software System). 2004. Inc. Version 7.

Vázquez, J. A., Pedreira, A., Durán, S., Cabanelas, D., Souto-Montero, P., Martínez, P., & Valcarcel, J. (2022). Biorefinery for tuna head wastes: Production of protein hydrolysates, high-quality oils, minerals and bacterial peptones. Journal of Cleaner Production, 357, 131909. https://doi.org/10.1016/j.jclepro.2022.131909.

Yang, X., Wang, G., Zhao, X., Dong, X., Chi, S., & Tan, B. (2021). Addition of hydrolysed porcine mucosa to low-fishmeal feed improves intestinal morphology and the expressions of intestinal amino acids and small peptide transporters in hybrid groupers (Epinephelus fuscoguttatus♀× E. lanceolatus♂). Aquaculture, 535, 736389. https://doi.org/10.1016/j.aquaculture.2021.736389.

Yang, X., Zhi, X., Song, Z., Wang, G., Zhao, X., Chi, S., & Tan, B. (2022). Flesh quality of hybrid grouper (Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂) fed with hydrolyzed porcine mucosa-supplemented low fishmeal diet. Animal Nutrition, 8(1), 114-124. https://doi.org/10.1016/j.aninu.2021.05.011.

Yang, X., Dong, X., Yang, Q., Wang, G., Zhao, X., Lui, H., Zhang, S., Chi, S., & Tan, B. (2020). Addition of enzyme-digested hydrolysed porcine mucosa to low-fishmeal feed improves growth, intestinal microbiota, and intestinal peptide and amino acid transporter expressions in hybrid groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). 00, 1 – 20. https://doi.org/10.1111/anu.13190.

Yathisha, U. G., Vaidya, S., & Sheshappa, M. B. (2022). Functional Properties of Protein Hydrolyzate from Ribbon Fish (Lepturacanthus Savala) as Prepared by Enzymatic hydrolysis. International Journal of Food Properties, 25(1), 187-203. https://doi.org/10.1080/10942912.2022.2027964.

Zou, Y., Shahidi, F., Shi, H., Wang, J., Huang, Y., Xu, W., & Wang, D. (2021). Values-added utilization of protein and hydrolysates from animal processing by-product livers: A review. Trends in Food Science & Technology, 110, 432-442. https://doi.org/10.1016/j.tifs.2021.02.033.

Downloads

Publicado

19/07/2022

Como Citar

CRUZ, M. C. S. da; PIANA, P. A.; BITTENCOURT, F.; SIGNOR, A.; BOSCOLO, W. R. Hidrolisado Proteico de Mucosa Suína como estimulante alimentar para juvenis de tilápia do Nilo. Research, Society and Development, [S. l.], v. 11, n. 9, p. e56311932143, 2022. DOI: 10.33448/rsd-v11i9.32143. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32143. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas