Otimização do processo foto-fentom para a remediação de resíduos de diclofenaco de sódio em amostras de água
DOI:
https://doi.org/10.33448/rsd-v11i12.34184Palavras-chave:
Processo Oxidativo Avançado; Diclofenaco de sódio; Contaminação ambiental; Espectrofotometria; Água.Resumo
Mundialmente, há uma incidência crescente de contaminantes em matrizes aquosas, entre eles, antibióticos, pesticidas e produtos farmacêuticos. Este problema, juntamente com a ocorrência destes poluentes em níveis traços, cria desafios únicos para a detecção analítica e avaliação do desempenho da remoção destes contaminantes da água. O objetivo deste experimento foi otimizar as condições experimentais de um processo oxidativo avançado para resíduos de diclofenaco de sódio em solução aquosa. O fármaco foi determinado por espectrofotometria UV-Vis usando um planejamento experimental com ponto central para avaliar a degradação do diclofenaco de sódio. O planejamento foi composto de dois níveis e três fatores: (X1) Tempo de irradiação, variando de 2 a 4 h; (X2) Teor de peróxido de hidrogênio, variando de 1 a 7%; e (X3) Concentração de Fe2+, variando de 25 a 100 mg L-1. De acordo com os níveis definidos para cada parâmetro, a metodologia otimizada de degradação do fármaco foi obtida pela combinação de 2 h de irradiação, 1% de solução de peróxido de hidrogênio e 25 mg L-1 de solução contendo Fe2+, onde 97,04% da degradação do diclofenaco de sódio foi alcançado. A partir da ANOVA pôde-se inferir que a concentração de Fe2+ (p = 0,13044) e, a interação tempo de irradiação com a concentração de Fe2+ (X1X3) (p = 0,0439) foram os fatores mais significativos no processo de degradação. O planejamento experimental foi útil para indicar a região de degradação máxima, portanto, a metodologia foi adequada para a degradação dos resíduos deste medicamento em amostras de água.
Referências
Acuña, V., Ginebreda, A., Mor, J. R., Petrovic, M., Sabater, S., Sumpter, J., Barceló, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environment International, 85, 327–333. https://doi.org/10.1016/j.envint.2015.09.023
Ammar, H. B.; Brahim, M. Ben; Abdelhédi, R.; Samet, Y. (2016). Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 420, 222–227. http://dx.doi.org/10.1016/j.molcata.2016.04.029
Aydin, H.; Melike, K.; Semra, K.; Alireza, K.; Ozkan A.; Bilal Y. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53–62. https://doi.org/10.1016/j.jenvman.2018.01.014
Alygizakis, N. A.; Gago-Ferrero, P.; Borova, V. L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N. S. (2016). Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Science of the Total Environment, 541, 1097–1105. https://doi.org/10.1016/j.scitotenv.2015.09.145
Ameta, R. Chohadia A. K. Jain, A. Punjabi, P. B. (2018). Fenton and Photo-Fenton Processes. Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology, 3, 49-87. https://doi.org/10.1016/B978-0-12-810499-6.00003-6
Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água. 11 (2), 387-401.
Baloyi, J.; Ntho, T. & Moma, J. (2018). A Novel Synthesis Method of Al/Cr Pillared Clay and its Application in the Catalytic Wet Air Oxidation of Phenol. Catalysis Letters, 148 (12), 3655–3668. https://doi.org/10.1007/s10562-018-2579-x
Bel Hadjltaief, H.; Costa, P. da; Beaunier, P.; Gálvez, M. E.; Zina, Ben, M. (2014). Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Applied Clay Science, 91-92, 46–54. https://doi.org/10.1016/j.clay.2014.01.020
Carra, I.; Sánchez Pérez, J. A.; Malato, S.; Autin, O.; Jefferson, B.; Jarvis, P. (2015). Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process. Chemical Engineering Journal, 264, 690–696. https://doi.org/10.1016/J.CEJ.2014.11.142
Chan, J. Y. T.; Ang, S. Y.; Ye, E. Y.; Sullivan, M.; Zhang, J., & Lin, M. (2015). Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets. Physical Chemistry Chemical Physics, 17, 38. https://doi.org/10.1039/C5CP03332B
Cihanoglu, A.; Gunduz, G.; Dukkanci, M. (2015). Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Applied Catalysis B: Environmental, 165, 687–699. https://doi.org/10.1016/j.apcatb.2014.10.073
Davididou, K.; Monteagudo, J. M.; Chatzisymeon, E.; Dur An, A.; Exposito, A. J. (2017). Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate. Separation and Purification Technology, 172, 227–235. https://doi.org/10.1016/j.seppur.2016.08.021
Faust, B. C.; Hoigné, J. (1990) Photolysis of Fe (III)-hidroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment, 24 (1), 79-89. https://doi.org/10.1016/0960-1686(90)90443-Q
Hahladakis, J. N et al (2018). An overview of chemical additivies present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazard Materials, 344, 179- 199. https://doi.org/10.1016/j.jhazmat.2017.10.014
Hu, J.; Zhai, C.; Zhu, M. (2021). Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction. Chinese Chemical Letters, 32, 1348-1358. https://doi.org/10.1016/j.cclet.2020.09.049
Karabegović, I.T., S.S. Stojicević, D.T. Velicković, N.C. Nikolić and M.L. Lazic. (2013). Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120, 429-436. http://dx.doi.org/10.1016/j.seppur.2013.10.021
Li, X.; Huang, S.; Xu, H.; Deng, Y.; Wang, Z.; Liu, Z-H. (2021). Molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac in Fenton-like system. Chinese Chemical Letters, 1-5. https://doi.org/10.1016/j.cclet.2021.07.058
Lima, S. L.; Rodrigues, M. J. R.; Silva, T. R.; Novais, C.; Naves, P. (2015). Uso indiscriminado de diclofenaco de potássio pela população idosa na cidade de Anápolis, no estado de Goiás, Brasil em 2014. Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(2), 179-188.
Lonappan, L.; Brar, S. K.; Das, R. K.; Verma, M.; Surampalli, R. Y. (2016). Diclofenac and its transformation products: Environmental occurrence and toxicity - A review, 96, 127-138. https://doi.org/10.1016/j.envint.2016.09.014
Martins, L. M.; Silva, C. E.; Moita Neto, J. M.; Lima, A. S.; Moreira, R. F. P. M. (2011) Application of Fenton, photo-Fenton and UV/H2O2 in treating synthetic textile wastewater containing the dye Black Biozol UC. Engenharia Sanitária e Ambiental, 16, 261-270.
Santos, L. G., S. S.; Bergold, A. M. (2007). Caracterização e qualificação de diclofenaco de sódio como padrão secundário. Latin American Journal of Pharmacy, 26, 355-361.
Silva, D. F.; Azevedo, E. B.; Rezende, M. O. O. (2016). Optimization of Microwave-Assisted Extraction of a Bioherbicide from Canavalia ensiformis Leaves. American Journal of Environmental Sciences, 12 (1), 27-32. https://doi.org/10.3844/ajessp.2016.27.32
Silva, D. F.; Landgraf, M. D.; Rezende, M. O. O. (2017). Assessment of Triazine Herbicides in Soil by Microwave-assisted Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry Detection. Journal of Chemistry and Chemical Engineering, 11, 1-8. https://doi.org/10.17265/1934-7375/2017.01.001
Silva, D. F.; Landgraf, M. D.; Rezende, M. O. O. (2017). Assessment of Triazine Herbicides in Soil by Microwave-assisted Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry Detection. Journal of Chemistry and Chemical Engineering, 11, 1-8. https://doi.org/10.17265/1934-7375/2017.01.001
Song, J.; Li, D.; Liu, C.; Zhang, Y. (2011). Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innovative Food Science and Emerging Technologies, 12, 282-287. https://doi.org/10.1016/j.ifset.2011.03.001
Sun, M.; Liu, H.; Qu, J.; Li, J. (2016). Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 6, 1600087. https://doi.org/10.1002/aenm.201600087
Thanhmingliana, D. T. (2015). Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micro-pollutant diclofenac sodium. Chemical Engineering Journal. 263, 364-373. https://doi.org/10.1016/j.cej.2014.10.102
Tong, W.; Xie, Y.; Luo, H.; Niu, J.; Ran, W.; Hu, W.; Wang, L.; Yao, C.; Liu, W.; Zhang, Y.; Wang, Y. (2019). Phosphorus-rich microorganism-enabled synthesis of cobalt phosphide/carbon composite for bisphenol A degradation through activation of peroxymonosulfate. Chemical Engineering Journal. 378. 122187. https://doi.org/10.1016/j.cej.2019.122187
Vieira, F. S.; Santos, M. A. B. O setor farmacêutico no Brasil sob as Lentes da Conta- Satélite de Saúde, Texto para discussão, Instituto de Pesquisa Econômica e Aplicada, Brasília, 2020.
Zhao, W.; Yu, Z.; Liu, J.; Yu, Y.; Yin, Y.; Lin, S.; Chen, F. (2011). Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. Journal of the Science of Food and Agriculture, 91, 2201-2209. https://doi.org/10.1002/jsfa.4440
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Nylvana Moreira Costa; Larissa Rocha de Oliveira; Breno Ricardo Barroso Lima; Eduardo Henrique Costa Rodrigues; Alexsandro Ferreira dos Santos; Anna Regina Lanner de Moura; Wolia Costa Gomes; Rita de Cássia Mendonça de Miranda; Maria Raimunda Chagas Silva; Darlan Ferreira da Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.