Sequenciamento de operações unitárias para processamento integral e sustentável do amendoim

Autores

DOI:

https://doi.org/10.33448/rsd-v9i6.3449

Palavras-chave:

Biomassa; Amendoim; Uso Integral; Processos; Sustentabilidade.

Resumo

As biomassas mais utilizadas são madeira, cana-de-açúcar, papel, casca de arroz e amendoim. Com base no conceito de sustentabilidade e redução de resíduos, a utilização plena da biomassa é uma alternativa capaz de proporcionar às pessoas uma melhor ingestão nutricional, melhorando a economia relacionada à biomassa e a relação ecológica entre o homem e o meio ambiente. Portanto, o objetivo deste trabalho foi o uso sustentável da biomassa, o amendoim, por meio de operações unitárias múltiplas. Assim, o material passou por vários processos, como o processo de moagem, onde foi possível obter dados de análise imediata (teor de umidade, teor de cinzas, teor volátil e carbono fixo) e tamanho das partículas. Em seguida, a secagem foi realizada utilizando energia solar e a eficiência de secagem foi obtida. Testes de infravermelho e estufa foram realizados em laboratório para determinar as curvas de secagem e umidade. Após a secagem, também foi realizada a extração de óleo com etanol como solvente aquecido por energia solar. Depois disso, o bolo residual foi utilizado como material adsorvente na remoção do corante por adsorção em leito fixo. Assim, o adsorvente impregnado de corante passou por um processo de pirólise para formar carvão fino, bio-óleo e gases. Com produtos e subprodutos de cada processo, foi possível gerar o espectro infravermelho de cada um. Portanto, mostra-se como é possível o uso integral do amendoim como biomassa, utilizando processos sustentáveis de engenharia química, e como ele pode contribuir para a redução da poluição e da produção de resíduos.

Referências

Agência Nacional de Vigilância Sanitária. (2003, July). Resolução RDC nº 172, de 04 de julho de 2003. http://portal.anvisa.gov.br/documents/33916/388704/RDC_n_172.pdf/89e81129-5a83-4b38-a677-11eca66a2acc.

Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. M. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 34(3), 927-935.

Ali, R. Al-Othman, Z. A., & Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 184(1), 238-247.

Allen, S. J., Gan, Q., Matthews, R., & Johnson, P. A. (2003). Comparison of optimized isotherm models for basic dye adsorption by kudzu. Bioresource technology, 88(2), 143-152.

Almeida, N. P., & Santos, K. G. (2020). Chemical Engineering Laboratory teaching using Project-based learning approach: gas adsorption using banana peel. Research, Society and Development, 9(3), e184932716.

Assis, P. E. P. (1994). Aproveitamento integral de resíduos agrícolas e agroindustriais. Symposium of Technological Innovations in the Sugar Cane Agro-industry, STAB, 13, 10-12.

Batista Júnior, R., Araújo, B. S. A., Franco, P. I. B. M., Silvério, B. C., Dantas, S. C., & Santos, K. G. (2017). Global reaction model to describe the kinetics of catalytic pyrolysis of coffee grounds waste. Materials Science Forum, 899, 173-178.

Bernades, D., Xavier, T., Freitas, R., & Lira, T. (2020). Bibliometric analysis on pyrolysis of banana plantation wastes. Research, Society and Development, 9(4), e75942455.

Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource technology, 99(17), 8441-8444.

Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1974). Drying Cereal Grains. Westport: The AVI Publishing Company Inc.

Choy, K. K. H., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling, 27(1), 57-71.

Cremasco, M. A. (2012). Operações unitárias em sistemas particulados e fluidomecânicos. São Paulo: Blucher.

Dalbello, O. (1995). Eficiência do processo de secagem do amendoim (Arachis hypogaea L) e milho-pipoca (Zea mays L.) [Master’s Thesis, Universidade Estadual de Campinas]. Unicamp Repository. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257466.

Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275.

Fu, Y. & Viraraghavan, T. (2002). Removal of Congo Red from an aqueous solution by fungus Aspergillus Niger. Advances in Environmental Research, 7(1), 239-247.

Geankoplis, C. J. (2003). Transport processes and separation process principles: (includes unit operations). Upper Saddle River: Prentice Hall Professional Technical Reference.

Gomes, M. S. (2010). Produção de bio-óleo através do processo termoquímico de pirólise. [Trabalho de Conclusão de Curso, Faculdade de Tecnologia de Araçatuba], Araçatuba, SP, Brasil.

Henderson, J. M. & Henderson, S. M. (1968). A computational procedure for deep-bed drying analysis. Journal of Agricultural Engineering Research, 13(2), 87-95.

Hou L., Wang, F., Zeng, Q., Su W., Zhang, M., & Wang, Z-L. (2019). Adsorption of Bisphenol A on Peanut Shell Biochars: The Effects of Surfactants. Journal of Chemistry, 2019, Article ID 2428505, 1-10.

Isquierdo, E., Siqueira, V., Borém, F., Andrade, E., Luz, P., & Quequeto, W. (2020). Moisture sorption isotherms and thermodynamic properties of passion fruit seeds. Research, Society and Development, 9(5), e44952884.

Jorge, I. R., Tavares, F. P., Santos, K. G. (2015). Remoção do Corante Azul de Metileno no Tratamento de Efluentes por Adsorção em Bagaço de Cana de Açúcar. p. 491-500 . In Anais do XXXVII Congresso Brasileiro de Sistemas Particulados, ENEMP 2015 [=Blucher Engineering Proceedings]. São Paulo: Blucher. https://doi.org/10.5151/ENEMP2015-LE-730.

Kunz, A., Peralta-Zamora, P., Moraes, S. G. de, Durán, N. (2002). Novas tendências no tratamento de efluentes têxteis. Química Nova, 25(1), 78-82.

Lewis, W. K. (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432.

Lira, T. S., Santos, K. G., Murata, V. V., Gianesella, M., Barrozo, M. A. S. (2010). The Use of Nonlinearity Measures in the Estimation of Kinetic Parameters of Sugarcane Bagasse Pyrolysis. Chemical Engineering & Technology, 33, 1699-1705.

McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource technology, 83(1), 37-46.

Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying technology, 20(7), 1503-1513.

Nandi, B. K., Goswami, A., Das, A. K., Mondal B., & Purkait, M. K. (2008). Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Separation Science and Technology, 43(6) 1382-1403.

Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1), 112-113.

Özacar, M., & Şengil, İ A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of hazardous materials, 98(1-3), 211-224.

Page, G. E. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers (Publication No 1300089) [Master’s Thesis, Purdue University], ProQuest Dissertations Publishing. https://docs.lib.purdue.edu/dissertations/AAI1300089/

Pedroza, M. M., Sousa, J. F. de, Vieira, G. E. G., & Fontana, J. F. (2010). Balanço energético da pirólise de lodo de esgoto: uma abordagem das propriedades termodinâmicas do processo. In: XVIII Congresso Brasileiro de Engenharia Química, COBEQ 2010, Foz do Iguaçu: Anais. Foz do Iguaçu: ABEP, 18, 1-8.

Pereira, A. W. (2012). Calibração Multivariada de Misturas de Óleos Vegetais Utilizando Espectroscopia no Infravermelho Médio. Dissertação (Mestrado em Ciências Agrárias). Programa de Pós-Graduação, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil.

Pereira, A.S. et al. (2018). Metodologia do trabalho científico. [e-Book]. Santa Maria. Ed.

UAB/NTE/UFSM. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Accessed on: April 4th, 2020.

Pereira, T., Pires, C., & Passos Santos, D. (2020). Modeling and simulation of pyrolysis of sisal residue in transient regime. Research, Society and Development, 9(3), e121932647.

Pimentel, F., Xavier, T., & Lira, T. (2019). A bibliometric review on a co-pyrolysis of biomass and plastic waste. Research, Society and Development, 8(2), e1282585.

Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.

Rai, M., Khan, P. M. A., Farooqui M., & Zaheer. A. (2004). A study of the removal of dyes by Goda sand. Journal of the Indian Chemical Society, 81(6), 484-487.

Ramalho, H. F. & Suarez, P. A. Z. (2012). A química dos óleos e gorduras e seus processos de extração e refino. Revista Virtual de Química, 5(1), 2-15.

Rydberg. J., Cox. M., Musikas, C., & Choppin, G. R. (2004). Solvent Extraction Principles and Practice, Revised and Expanded. New York: Marcel Dekker, Inc., 2nd Ed., CRC Press.

Santos, E. G. dos, Alsina, O. L. S. de, Silva, F. L. H. da (2007). Desempenho de biomassas na adsorção de hidrocarbonetos leves em efluentes aquosos. Química Nova, 30(2), 327-331.

Santos, K. G., Lira, T. S., Murata, V. V., Gianesella, M.; & Barrozo, M. A.S. (2010). Pyrolysis of Sugarcane Bagasse: A Consecutive Reactions Kinetic Model from TGA Experiments. Materials Science Forum (Online), v. 660-661, 593-598.

Santos, K. G. dos. (2011). Aspectos fundamentais da pirólise de biomassa em leito de jorro: fluidodinâmica e cinética do processo. [Doctoral Dissertation, Universidade Federal de Uberlândia]. UFU Repository. https://repositorio.ufu.br/handle/123456789/15058.

Santos, K. G., Lobato, F. S., Lira, T. S., Murata, V. V., & Barrozo, M. A. S. (2012). Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse. Chemical Engineering Research & Design, 90, 1989-1996.

Santos, K. G., Malagoni, R. A., Lira, T. S., Murata, V. V., & Barrozo, M. A. S. (2012). Isoconversional Kinetic Analysis of Pyrolysis of Sugarcane Bagasse. Materials Science Forum (Online), v. 727-728, 1830-1835.

Santos, K. G., Lira, T. S., Gianesella, M., Lobato, F. S., Murata, V. V., & Barroso, M. A. S. (2012). Bagasse Pyrolysis: A Comparative Study of Kinetic Models. Chemical Engineering Communications (Print), 199, 109-121.

Silva, A. A. da, Barros, N. A. de, Souza, E. S. de, & Castelo Branco, N. dos S. D. (2005). Análise do consumo alimentar e das técnicas de processamento de alimentos empregados pela comunidade de dois bairros do município de Seropédica - RJ. Revista Universidade Rural, 27 (1-2), 67-76.

Silva, L. R. C., Ribeiro, M. B. M., Oliveira, A. D., & Santos, K. G. (2017). Estudo da Extração de óleo vegetal com solvente em leito fixo empregando energia solar, In XXXVIII Congresso Brasileiro de Sistemas Particulados, ENEMP 2017, Maringá. Trabalho apresentado em Anais do Congresso Brasileiro de Sistemas Particulados. Available at: https://proceedings.science/enemp/papers/estudo-da-extracao-de-oleo-vegetal-com-solvente-em-leito-fixo-empregando-energia-solar-?lang=pt-br. Accessed on: April 2nd, 2020.

Silva, L. R. C., Ribeiro, M. B. M., Oliveira, A. D., Silva, C. S., Faria, E., & Santos, K. G. (2019). Destilação solar do solvente etanol proveniente da extração de óleo de coco. Brazilian Journal of Development, 5, 28964-28982.

Silva, C. S., Silva, L. R. C. & Santos, K. G. (2020). Extração sólido-líquido de óleo de baru assistida por energia solar. In Avanços das Pesquisas e Inovações na Engenharia Química 2 (pp. 1-11). Ponta Grossa: Atena.

Silva, S. T., & Sousa, N. G. (2020). Auxiliary solar heating system: simulation and control. Research, Society and Development, 9(3), e188932730.

Silvério, B. C., Freitas, C. M. Santos, K. G., Franco, P. I. B. M., & Antoniosi Filho, N. R. (2017). Isoconversional Kinetic Analysis of Pyrolysis of Malt Waste. Materials Science Forum, 899, 107-112.

Souza, G. F. M. V. (2013). Secagem de sementes de soja em leito fixo: equilíbrio e cinética da sílica gel para controle de umidade, modelagem do processo e análise da qualidade das sementes. [Doctoral Dissertation, Universidade Federal de Uberlândia]. UFU Repository. https://repositorio.ufu.br/handle/123456789/14718.

Stoppe, A. C. R., Faiad, J. C., Cunha, L. M. P., Santos, K. G., Vieira Neto, J. L. (2019). Remoção do Corante Azul de Metileno no Tratamento de Efluentes por Adsorção em Carvão de Coco Verde e Carvão Ativado. In XXXIX Congresso Brasileiro de Sistemas Particulados, ENEMP 2019, Belém. Trabalho apresentado em XXXIX Congresso Brasileiro de Sistemas Particulados, ENEMP 2019. Available at: https://proceedings.science/enemp-2019/papers/remocao-do-corante-azul-de-metileno-no-tratamento-de-efluentes-por-adsorcao-em-carvao-de-coco-verde-e-carvao-ativado-. Accessed on: April 2nd, 2020.

Stoppe, A. C. R., Vieira Neto, J. L., & Santos, K. G. (2020). Development of a fixed bed solar dryer: experimental study and CFD simulation. Research, Society and Development, 9(3), e123932667.

Tavares, P. F. (2015). Processo contínuo de extração de óleos vegetais com solvente empregando o Concentrador Solar Biangular de Doze Lados. (Trabalho de Conclusão de Curso TCC). Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil.

Tavares, F. P. & Santos, K. G. (2016). Extração por solvente de óleo de amendoim empregando energia solar. In XXI Congresso Brasileiro de Engenharia Química, COBEQ 2016, Fortaleza: Trabalho apresentado em Anais do Congresso Brasileiro de Engenharia Química. Available at: https://proceedings.science/cobeq/cobeq-2016/papers/extracao-por-solvente-de-oleo-de-amendoim-empregando-energia-solar?lang=pt-br. Accessed on: April 2nd, 2020.

Tavares, F. P., Souza, D. L., Santos, K. G. (2017). Biossorção de Azul de Metileno de Efluente Têxtil Empregando Serragem do Gênero Apuleia Leiocarpa. In XXXVIII Congresso Brasileiro de Sistemas Particulados, ENEMP 2017, Maringá: Trabalho apresentado em Anais do Congresso Brasileiro de Sistemas Particulados. Available at: https://proceedings.science/enemp/papers/biossorcao-de-azul-de-metileno-de-efluente-textil-empregando-serragem-do-genero-apuleia-leiocarpa. Accessed on: April 2nd, 2020.

Tavares, F. P., Silvério, B. C., Vieira Neto, J. L. Santos, K. G. (2019). Extração sustentável de óleo de pinhão manso com solvente aquecido por radiação solar. Brazilian Journal of Development, 5, 28909-28925.

Vieira, G. E. G. (2004). Fontes alternativas de energia - Processo aperfeiçoado de conversão térmica. [Unpublished Doctoral Dissertation]. Universidade Federal Fluminense.

Woodroof, J. G. (1983). Peanuts: production, processing, products. (3rd ed). Westport: The AVI Publishing Company.

Xu T. & Liu X. (2008) Peanut Shell Activated Carbon: Characterization, Surface Modification and Adsorption of Pb2+ from Aqueous Solution. Chinese Journal of Chemical Engineering. 16(3), 401-406.

Zullo, M. A. T., Godoy, I. J., Moraes, S. A., & Pereira, J. C. V. N. A. (1993). Produtividade e qualidade do óleo de linhagens de amendoim. Bragantia, 52(2), 105-112.

Downloads

Publicado

12/04/2020

Como Citar

GUIMARÃES, B.; SILVA, J. T. T.; SANTOS, K. G.; VIEIRA NETO, J. L. Sequenciamento de operações unitárias para processamento integral e sustentável do amendoim. Research, Society and Development, [S. l.], v. 9, n. 6, p. e67963449, 2020. DOI: 10.33448/rsd-v9i6.3449. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3449. Acesso em: 17 jul. 2024.

Edição

Seção

Engenharias