Obtenção e caracterização de organogéis de óleo de soja estruturados com cera de cana-de-açúcar e suas frações solúveis em etanol à quente
DOI:
https://doi.org/10.33448/rsd-v9i6.3471Palavras-chave:
Organogéis; Cera de cana; Morfologia de cristais; Reologia; Dureza.Resumo
A cera de cana (SCW) foi fracionada usando etanol quente e um sistema de lavagem simples, as frações obtidas solúveis (SSCW) e insolúveis (ISCW) foram usadas para produzir organogéis cristalizados em duas temperaturas diferentes (5 e 25°C) nas concentrações de 1 , 2, 3 e 4% (m/m). A pesquisa avaliou o comparamento dos organogéis obtidos da cera de cana-de-açúcar (e suas frações), todos os organogéis foram avaliados quanto à sua microestrutura, comportamento térmico, comportamento reológico e resistência mecânica. Todas as amostras de organogel foram avaliadas quanto à estabilidade em uma estufa BOD com temperatura controlada (a 5, 25 e 35°C), e o comportamento térmico para os organogéis de SCW, SSCW e ISCW foi diferente. A variação de entalpia passou de 118,87 para 129,63 e 85,65J/g para as frações. Os organogéis obtidos a partir desses materiais foram algo semelhantes durante a cristalização (TPeak de 42,83, 37,19 e 36,23°C, respectivamente), a variação da cristalização e da entalpia de fusão apresentou histerese, como observado para outros organogéis de ceras. Os organogéis de SSCW foram significativamente mais difíceis do que os obtidos com SCW e ISCW. As micrografias dos organogéis mostraram uma rede mais organizada presente no organogel da SSCW quando comparada com a SCW que foi mais organizada que os organogéis da ISCW. A diferença na microestrutura observada explica a diferença no comportamento mecânico dos organogéis formados com frações solúveis e insolúveis em etanol quente da cera de cana de açúcar.Referências
Abdallah, D. J., Lu, L., & Weiss, R. G. (1999). Thermoreversible Organogels from Alkane Gelators with One Heteroatom. Chemistry of Materials, 11(10), 2907–2911. https://doi.org/10.1021/cm9902826
Abdallah, D. J., & Weiss, R. G. (2000). n -Alkanes Gel n -Alkanes (and Many Other Organic Liquids). Langmuir, 16(2), 352–355. https://doi.org/10.1021/la990795r
Almeida, I. F., & Bahia, M. F. (2006). Evaluation of the physical stability of two oleogels. International Journal of Pharmaceutics, 327(1–2), 73–77. https://doi.org/10.1016/j.ijpharm.2006.07.036
Alvarez-Mitre, F. M., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., & Toro-Vazquez, J. F. (2012). Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Research International, 49(1), 580–587. https://doi.org/10.1016/j.foodres.2012.08.025
Blake, A. I., Co, E. D., & Marangoni, A. G. (2014). Structure and Physical Properties of Plant Wax Crystal Networks and Their Relationship to Oil Binding Capacity. Journal of the American Oil Chemists’ Society, 91(6), 885–903. https://doi.org/10.1007/s11746-014-2435-0
Bot, A., Adel, R., & Roijers, E. C. (2008). Fibrils of γ-Oryzanol + β-Sitosterol in Edible Oil Organogels. Journal of the American Oil Chemists’ Society, 85(12), 1127–1134. https://doi.org/10.1007/s11746-008-1298-7
Campos, R. (2005). Experimental Methodology. In Fat Crystal Networks (Vol. 41, Issue 3, pp. 267–348). Marcel Dekker. https://doi.org/10.1590/S1516-93322005000300015
Chaves, K. F., Rocha, J. C. B., & Arellano, D. B. (2020). Simplified process to produce margarines with reduced saturated fatty acids using vegetable wax organogels. Research, Society and Development, 9(4), 165943046. https://doi.org/10.33448/rsd-v9i4.3046
Daniel, J., & Rajasekharan, R. (2003). Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids. Journal of the American Oil Chemists’ Society, 80(5), 417–421. https://doi.org/10.1007/s11746-003-0714-0
Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2009). Physical Properties of Rice Bran Wax in Bulk and Organogels. Journal of the American Oil Chemists’ Society, 86(12), 1163–1173. https://doi.org/10.1007/s11746-009-1464-6
Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2012). Crystallization kinetics of organogels prepared by rice bran wax and vegetable oils. Journal of Oleo Science, 61(1), 1–9. http://www.ncbi.nlm.nih.gov/pubmed/22188800
Ema, Y., Ikeya, M., & Okamoto, M. (2006). Foam processing and cellular structure of polylactide-based nanocomposites. Polymer, 47(15), 5350–5359. https://doi.org/10.1016/j.polymer.2006.05.050
Gandra, K. M. (2006). Master Thesis - Production and characterization of sugarcane wax and its fractions. Universidade Estadual de Campinas.
Himawan, C., Starov, V. M., & Stapley, a G. F. (2006). Thermodynamic and kinetic aspects of fat crystallization. Advances in Colloid and Interface Science, 122(1–3), 3–33. https://doi.org/10.1016/j.cis.2006.06.016
Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. a., & Rush, J. W. E. (2009). Potential food applications of edible oil organogels. Trends in Food Science & Technology, 20(10), 470–480. https://doi.org/10.1016/j.tifs.2009.06.002
Hwang, H.-S., Kim, S., Evans, K. O., Koga, C., & Lee, Y. (2015). Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Structure, 5, 10–20. https://doi.org/10.1016/j.foostr.2015.04.002
Hwang, H.-S., Singh, M., Winkler-Moser, J. K., Bakota, E. L., & Liu, S. X. (2014). Preparation of Margarines from Organogels of Sunflower Wax and Vegetable Oils. Journal of Food Science, 79(10), C1926–C1932. https://doi.org/10.1111/1750-3841.12596
Jang, A., Bae, W., Hwang, H.-S., Lee, H. G., & Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry, 187(4), 525–529. https://doi.org/10.1016/j.foodchem.2015.04.110
Lopes, J. D. (2010). Master Thesis - Simplified process to production of concentrated long chain fatty acids from sugar cane wax (Saccharum officinarum L.). Universidade Estadual de Campinas.
Lupi, F.R., Gabriele, D., Facciolo, D., Baldino, N., Seta, L., & de Cindio, B. (2012). Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Research International, 46(1), 177–184. https://doi.org/10.1016/j.foodres.2011.11.029
Lupi, Francesca R., Gabriele, D., Seta, L., Baldino, N., & de Cindio, B. (2014). Rheological design of stabilized meat sauces for industrial uses. European Journal of Lipid Science and Technology, 116(12), 1734–1744. https://doi.org/10.1002/ejlt.201400286
Mert, B., & Demirkesen, I. (2016). Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT - Food Science and Technology, 68, 477–484. https://doi.org/10.1016/j.lwt.2015.12.063
Miyazaki, Y., Yoshida, K., & Marangoni, A. G. (2011). Online Only Supplement - Lecture Abstracts of the 9th Euro Fed Lipid Congress, Rotterdam 18-21 September 2011. European Journal of Lipid Science and Technology, 113(S1), 1–46. https://doi.org/10.1002/ejlt.201100363
Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., & Toro-Vazquez, J. F. (2009). Rheological Properties of Candelilla Wax and Dotriacontane Organogels Measured with a True-Gap System. Journal of the American Oil Chemists’ Society, 86(8), 765–772. https://doi.org/10.1007/s11746-009-1414-3
Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. a., Weiss, R. G., & Toro-Vazquez, J. F. (2009). Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. European Journal of Lipid Science and Technology, 111(2), 207–215. https://doi.org/10.1002/ejlt.200810174
Parish, E. J., Boos, T. L., & Li, S. (2002). The Chemistry of Waxes and Sterols. In C. C. . Akoh & D. B. . Min (Eds.), Food Lipids - Chemistry, Nutrition, and Biotechnology (p. 30). CRC Press LLC. https://doi.org/10.1201/9780203908815.ch4
Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food Funct., 7(1), 20–29. https://doi.org/10.1039/C5FO01006C
Pernetti, M., van Malssen, K. F., Flöter, E., & Bot, A. (2007). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid & Interface Science, 12(4–5), 221–231. https://doi.org/10.1016/j.cocis.2007.07.002
Pernetti, M., van Malssen, K., Kalnin, D., & Floter, E. (2007). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloids, 21(5–6), 855–861. https://doi.org/10.1016/j.foodhyd.2006.10.023
Rocha, J.C.B., Lopes, J. D., Mascarenhas, M. C. N., Arellano, D. B., Guerreiro, L. M. R., & da Cunha, R. L. (2013). Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Research International, 50(1). https://doi.org/10.1016/j.foodres.2012.10.043
Rogers, M. A. (2009). Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International, 42(7), 747–753. https://doi.org/10.1016/j.foodres.2009.02.024
Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009a). Oil organogels: the fat of the future? Soft Matter, 5(8), 1594. https://doi.org/10.1039/b822008p
Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009b). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels. Current Opinion in Colloid & Interface Science, 14(1), 33–42. https://doi.org/10.1016/j.cocis.2008.02.004
Rogers, M. A., Wright, A., & Marangoni, A. G. (2008). Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Research International, 41(10), 1026–1034. https://doi.org/10.1016/j.foodres.2008.07.012
Terech, P. (1992). 12-D-Hydroxyoctadecanoic acid organogels : a small angle neutron scattering study. Journal de Physique II, 2(12), 2181–2195. https://doi.org/10.1051/jp2:1992259
Toro-Vazquez, J. F., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M., Alonzo-Macias, M., & González-Chávez, M. M. (2007). Thermal and Textural Properties of Organogels Developed by Candelilla Wax in Safflower Oil. Journal of the American Oil Chemists’ Society, 84(11), 989–1000. https://doi.org/10.1007/s11746-007-1139-0
Vieira, T. M. F. de S. (2003). Thesis - OBTENÇÃO DE CERA DE CANA-DE-AÇÚCAR A PARTIR DE SUBPRODUTO DA INDÚSTRIA SUCRO-ALCOOLEIRA : EXTRAÇÃO , PURIFICAÇÃO E CARACTERIZAÇÃO [Universidade Estadual de Campinas]. http://www.bibliotecadigital.unicamp.br/document/?code=vtls000307074
Yılmaz, E., & Öğütcü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct., 6(4), 1194–1204. https://doi.org/10.1039/C5FO00019J
Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78(9), C1334-9. https://doi.org/10.1111/1750-3841.12175
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.