Avaliação da performance de dois softwares com inteligência artificial por meio das medidas geradas pela análise de Mcnamara em telerradiografia cefalométrica lateral
DOI:
https://doi.org/10.33448/rsd-v11i14.35820Palavras-chave:
Inteligência artificial; Ortodontia; Aprendizado de máquina; Radiologia; Diagnóstico.Resumo
O objetivo do trabalho foi comparar a performance de dois softwares com IA em telerradiografia cefalométrica lateral, por meio da avaliação da reprodutibilidade e confiabilidade das medidas lineares e angulares da análise de McNamara. Foram marcadas 30 telerradiografias cefalométricas por meio do método digital pelo examinador no Radiocef (RadioMemory). Posteriormente, a amostra foi marcada por meio da IA dos softwares CEFBOT (RadioMemory) e WebCephTM (AssembleCircle), para avaliação da reprodutibilidade e confiabilidade, em relação ao examinador e os softwares em questão. Para calibrar o examinador e avaliar a confiabilidade das marcações do examinador, CEFBOT, e WebCephTM utilizou o Coeficiente de Correlação Intraclasse (ICC), bem como, o teste ANOVA e pós teste de Tukey avaliou a reprodutibilidade dos softwares, por meio dos pontos cefalométricos que compõem a análise de McNamara. O ICC médio do examinador, CEFBOT e do WebCeph foram 0.960, 0.940 e 0.954, respectivamente, indicando concordância quase perfeita. Ao comparar CEFBOT com examinador, observou-se diferença estatística (p<0.01) apenas na medida A-N perpendicular. Quanto ao WebCephTM, ao comparar com o examinador houve diferença significativa entre os fatores dois ao seis e o dez. E comparado ao CEFBOT, houve divergência nos mesmos fatores somado ao fator onze. Além disso, o WebCephTM não identificou as medidas Nfa-Nfp e Bfa-Bfp. O CEFBOT apresentou reprodutibilidade e confiabilidade na identificação dos pontos cefalométricos determinados pela análise de McNamara, mas necessitando de supervisão humana. O WebCeph apresentou concordância quase perfeita nas marcações, porém seis medidas apresentaram-se diferentes do examinador e duas não foram realizadas pela aplicação.
Referências
Albarakati, S., Kula, K., & Ghoneima (2012). A. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofacial Radiology, 41 (1), 11–17.
Bissoli, C. F., Takeshita, W.M., Castilho, J.C.M., Médici-Filho, E.M (2007). Digitalização de imagens em radiologia: uma nova visão de futuro. Revista Odonto, 30 (15), 34-39.
Borba, A. M.; Haupt, D.; Almeida Romualdo, L. T. De; Silva, A. L. F. Da; Graça Naclério-Homem, M. Da; Miloro, M (2016). How Many Oral and Maxillofacial Surgeons Does It Take to Perform Virtual Orthognathic Surgical Planning? Journal of Oral and Maxillofacial Surgery 74 (9), 1807–1826.
Chen, S.-K., Chen, Y.-J., Yao, C.-C. J., Chang, H.-F (2004). Enhanced Speed and Precision of Measurement in a Computer-Assisted Digital Cephalometric Analysis System. Angle Orthodontist,74 (4), 1-11.
Chen, Y., Stanley, K., & Att, W (2020). Artificial intelligence in dentistry: current applications and future perspectives. Quintessence International, 51 (3), 248–257.
Chien, P., Parks, E., Eraso, F., Hartsfield, J., Roberts, W., et al. (2009). Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofacial Radiology, 38 (5), 262–273.
Debelmas, A., Ketoff, S., Lanciaux, S., Corre, P., Friess, M., K, et al. (2019). Reproducibility assessment of Delaire cephalometric analysis using reconstructions from computed tomography. Journal of Stomatology, Oral and Maxillofacial Surgery, 121 (1), 35–39.
Dreyer, K. J., & Raymond Geis, J (2017). When machines think: Radiology’s next frontier. Radiology, 285 (3), 713–718.
Durão, A. P. R., Morosolli, A., Pittayapat, P., Bolstad, N., Ferreira, A. P., et al. (2015). Cephalometric landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative study. Imaging Science in Dentistry, 45 (4), 213–20.
Farooq, M. U., Khan, Mohd. A., Imran, S., Sameera, A., Qureshi, A., et al. (2016). Assessing the Reliability of Digitalized Cephalometric Analysis in Comparison with Manual Cephalometric Analysis. Journal of Clinical and Diagnostic Research, 10 (10), 20–23.
Forsting, M (2017). Machine Learning Will Change Medicine. Journal of Nuclear Medicine, 58 (3), 357–358.
Hung, K., Montalvao, C., Tanaka, R., Kawai, T., Bornstein, M. M (2019). The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiology, 48 (20190107), 1-22, 2019.
Hwang, H.-W., Park, J.-H., Moon, J.-H., Yu, Y., Kim, H., H. et al. (2020). Automated identification of cephalometric landmarks: Part 2- Might it be better than human? The Angle Orthodontist, 90 (1), 69–76.
Khan, A., Javed, M. Q., Bilal, R., Gaikwad, R. N (2020). Retrospective quality assurance audit of Lateral Cephalometric Radiographs at postgraduate teaching hospital. Pakistan Journal of Medical Sciences, 36 (7), 1601-1606.
Khanagar, S. B., Al-Ehaideb, A., Maganur, P. C., Vishwanathaiah, S., Patil, S., et al. (2021). Developments, application, and performance of artificial intelligence in dentistry – A systematic review. Journal of Dental Sciences, 16 (1), 508–522.
Kunz, F., Stellzig-Eisenhauer, A., Zeman, F., Boldt, J (2019). Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, 81 (1), 52–68.
Landis, J. R., Koch, G. G (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–74.
Leonardi, R., Giordano, D., & Maiorana, F (2009). An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. Journal of Biomedicine and Biotechnology, (2009), 1-11.
Livas, C., Delli, K., Spijkervet, F. K. L., Vissink, A., Dijkstra, P. U (2019). Concurrent validity and reliability of cephalometric analysis using smartphone apps and computer software. The Angle Orthodontist, 89 (6), 889–896.
Mahto, R. K., Kafle, D., Giri, A., Luintel, S., Karki, A (2022). Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health, 22 (1), 1-8.
Masse, J.-F (2019). Will the orthodontic profession disappear? Journal of Dental Sleep Medicine, 6 (2), 1-2.
Mcnamara, A (1984). A method of cephalomettic evaluation. American Journal of Orthodontics, 6, 449-469.
Meriç, P., & Naoumova, J (2020). Web-based Fully Automated Cephalometric Analysis: Comparisons between App-aided, Computerized, and Manual Tracings. Turkish Journal of Orthodontics, 33 (3), 142–149.
Moon, J. H., Hwang, H. W., Yu, Y., Kim, M. G., Donatelli, R. E., L. …, S. J (2020). How much deep learning is enough for automatic identification to be reliable? A cephalometric example. Angle Orthodontist, 90 (6), 823–830.
Obermeyer, Z., & Emanuel, E. J (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375 (13), 1216–1219.
Olmez, H., Gorgulu, S., Akin, E., Bengi, A. O., Tekdemir, İ., Ors, F (2011). Measurement accuracy of a computer-assisted three-dimensional analysis and a conventional two-dimensional method. The Angle Orthodontist, 81 (3), 375–382.
Ongkosuwito, E. M., Katsaros, C., Van’t Hof, M. A., Bodegom, J. C., Kuijpers-Jagtman, A. M (2002). The reproducibility of cephalometric measurements: a comparison of analogue and digital methods. European Journal of Orthodontics, 24, 655–665.
Park, J.-H., Hwang, H.-W., Moon, J.-H., Yu, Y., Kim, H., H. et al. (2019). Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. The Angle Orthodontist, 89 (6), 903–909.
Ravikumar, D., N., S., Ramakrishna, M., Sharna, N., Robindro, W (2019). Evaluation of McNamara’s analysis in South Indian (Tamil Nadu) children between 8–12 years of age using lateral cephalograms. Journal of Oral Biology and Craniofacial Research, 9 (2), 193–197.
Santoro, M., Jarjoura, K., & Cangialosi, T. J (2006). Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique. American Journal of Orthodontics and Dentofacial Orthopedics, 129 (3), 345–351.
Shahidi, S., Oshagh, M., Gozin, F., Salehi, P., Danaei, S. M (2013). Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofacial Radiology, 42, (1), p. 1-8.
Silva, T. P., Hughes, M. M., Menezes, L. Dos S., Melo, M. De F. B. De, Takeshita, W. M., Freitas, P. H. L. De (2021). Artificial Intelligence-Based Cephalometric Landmark Annotation and Measurements According to Arnett’s Analysis: Can we trust a bot to do that? Dentomaxillofacial Radiology, 50, (20200548), 1-6.
Subramanian, A. K., Chen, Y., Almalki, A., Sivamurthy, G., Kafle, D (2022). Cephalometric Analysis in Orthodontics Using Artificial Intelligence—A Comprehensive Review. BioMed Research International, 2022, 1–9.
Yu, H. J., Cho, S. R., Kim, M. J., Kim, W. H., Kim, J. W., Choi, J (2020). Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence. Journal of Dental Research, 99 (3), 249–256.
Zamrik, O. M., & Iseri, H (2021). The reliability and reproducibility of an Android cephalometric smartphone application in comparison with the conventional method. Angle Orthodontist, 91 (2), 236–242.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Laura Luiza Trindade de Souza; Thaisa Pinheiro Silva; William José e Silva Filho; Bruno Natan Santana Lima; Amanda Caroline Nascimento Meireles; Iris Tamara de Santana Oliveira; Wilton Mitsunari Takeshita
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.