O impacto do carregamento de fármaco na dissolução e difusão: um estudo de caso com dispersões sólidas amorfas de nevirapina
DOI:
https://doi.org/10.33448/rsd-v11i14.36117Palavras-chave:
Sistema de liberação de medicamentos; Nevirapina; Dissolução; Permeabilidade; Antirretroviral.Resumo
Dispersões sólidas amorfas (DSA) são uma alternativa viável para aumentar a solubilidade cinética de drogas mal solúveis em água. No entanto, há pouca discussão sobre o impacto do carregamento de drogas na taxa de dissolução e difusão de drogas em toda a membrana gerada pela supersaturação. Então, obteve-se dispersões sólidas amorfas com nevirapina e polivinilpirrolidona K-30 por método de evaporação de solvente utilizando diferentes cargas de drogas (10%, 15% e 20% p/p). Análise térmica, Espectroscopia de Infravermelho com Transformada de Fourier e Difração de Raios-X caracterizaram os DSA, indicando que houve uma boa compatibilidade entre os componentes, estabilizando a droga em seu estado amorfo. As interações intermoleculares impactaram no desempenho in vitro dos DSA, onde foram avaliadas para testes de dissolução em diferentes condições e estudos de permeabilidade. Todos os sistemas amorfos tiveram um incremento na solubilidade aquosa em comparação apenas com nevirapina, embora a dispersão sólida 10% (DS 10) manteve a supersaturação de drogas em concentrações muito altas por mais tempo, impedindo a recristalização da droga, tendo o maior fluxo de drogas na membrana e mais interações intermoleculares entre os componentes. Portanto, grandes quantidades do polímero são necessárias para a estabilidade da droga amorfa, devido ao aumento do número de interações intermoleculares.
Referências
Ahire, B. R., Rane, B. R., Bakliwal, S. R., Pawar, S. P., College, P. S. G. V. P. M., & Nandurbar, D. (2010). Solubility Enhancement of Poorly Water Soluble Drug by Solid Dispersion Techniques. International Journal of PharmTech Research, 2(3), 2007–2015.
Alhalaweh, A., Alzghoul, A., Mahlin, D., & Bergström, C. A. S. (2015). Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. International Journal of Pharmaceutics, 495(1), 312–317. https://doi.org/10.1016/j.ijpharm.2015.08.101
Ayala, A. P., Siesler, H. W., Wardell, S. M. S. V., Boechat, N., Dabbene, V., & Cuffini, S. L. (2007a). Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine. Journal of Molecular Structure, 828(1–3), 201–210. https://doi.org/10.1016/j.molstruc.2006.05.055
Ayala, A. P., Siesler, H. W., Wardell, S. M. S. V., Boechat, N., Dabbene, V., & Cuffini, S. L. (2007b). Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine. Journal of Molecular Structure, 828(1–3), 201–210. https://doi.org/10.1016/j.molstruc.2006.05.055
Baghel, S., Cathcart, H., & O’Reilly, N. J. (2016). Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. European Journal of Pharmaceutics and Biopharmaceutics, 107, 16–31. https://doi.org/10.1016/j.ejpb.2016.06.024
Bhujbal, S. v., Mitra, B., Jain, U., Gong, Y., Agrawal, A., Karki, S., Taylor, L. S., Kumar, S., & (Tony) Zhou, Q. (2021). Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B, 11(8), 2505–2536. https://doi.org/10.1016/J.APSB.2021.05.014
Caira, M. R., Bourne, S. A., Samsodien, H., Engel, E., Liebenberg, W., Stieger, N., & Aucamp, M. (2012). Co-crystals of the antiretroviral nevirapine: Crystal structures, thermal analysis and dissolution behaviour. CrystEngComm, 14(7), 2541–2551. https://doi.org/10.1039/c2ce06507j
Chadha, R., Arora, P., Saini, A., & Jain, D. S. (2010). Solvated Crystalline Forms of Nevirapine: Thermoanalytical and Spectroscopic Studies. AAPS PharmSciTech, 11(3), 1328–1339. https://doi.org/10.1208/s12249-010-9511-z
Charalabidis, A., Sfouni, M., Bergström, C., & Macheras, Panos. (2019). The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines. International Journal of Pharmaceutics, 566, 264–281. https://doi.org/10.1016/j.ijpharm.2019.05.041
Craig, D. Q. M. (2002). The mechanisms of drug release from solid dispersions in water-soluble polymers. In International Journal of Pharmaceutics (Vol. 231, Issue 2, pp. 131–144). Elsevier. https://doi.org/10.1016/S0378-5173(01)00891-2
Danda, L. J. de A., Batista, L. de M., Melo, V. C. S., Soares Sobrinho, J. L., & Soares, M. F. de L. R. (2019). Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. European Journal of Pharmaceutical Sciences, 133, 79–85. https://doi.org/10.1016/J.EJPS.2019.03.012
Datta, A., Ghosh, N. S., Gosh, S., Samanta, T., & Das, R. C. (2011). Enhancement of Solubility and Dissolution Profile of Nevirapine By Solid Dispersion Technique. International Journal of Chemistry Research, 2(3), 53–58.
Djuris, J., Nikolakakis, I., Ibric, S., Djuric, Z., & Kachrimanis, K. (2013). Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 228–237. https://doi.org/10.1016/j.ejpb.2012.12.018
Figueirêdo, C. B. M., Nadvorny, D., Vieira, A. C. Q. de M., Schver, G. C. R. de M., Soares Sobrinho, J. L., Rolim Neto, P. J., Lee, P. I., & Soares, M. F. de L. R. (2018). Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 119, 208–218. https://doi.org/10.1016/j.ejps.2018.04.024
Frank, K. J., Rosenblatt, K. M., Westedt, U., Hölig, P., Rosenberg, J., Mägerlein, M., Fricker, G., & Brandl, M. (2012). Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: True supersaturation vs. apparent solubility enhancement. International Journal of Pharmaceutics, 437(1–2), 288–293. https://doi.org/10.1016/j.ijpharm.2012.08.014
Grohganz, H., Priemel, P. A., Löbmann, K., Nielsen, L. H., Laitinen, R., Mullertz, A., Van den Mooter, G., & Rades, T. (2014). Refining stability and dissolution rate of amorphous drug formulations. Expert Opinion on Drug Delivery, 11(6), 977–989. https://doi.org/10.1517/17425247.2014.911728
Guan, J., Jin, L., Liu, Q., Xu, H., Wu, H., Zhang, X., & Mao, S. (2019). Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. European Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.ejps.2019.105043
Hate, S. S., Reutzel-Edens, S. M., & Taylor, L. S. (2019). Insight into Amorphous Solid Dispersion Performance by Coupled Dissolution and Membrane Mass Transfer Measurements [Research-article]. Molecular Pharmaceutics, 16(1), 448–461. https://doi.org/10.1021/acs.molpharmaceut.8b01117
Ilevbare, G. A., & Taylor, L. S. (2013). Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: Implications for solubility enhancing formulations. Crystal Growth and Design, 13(4), 1497–1509. https://doi.org/10.1021/cg301679h
Indulkar, A. S., Gao, Y., Raina, S. A., Zhang, G. G. Z., & Taylor, L. S. (2016). Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics, 13(6), 2059–2069. https://doi.org/10.1021/acs.molpharmaceut.6b00202
Indulkar, A. S., Lou, X., Zhang, G. G. Z., & Taylor, L. S. (2019). Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Molecular Pharmaceutics, 16(3), 1327–1339. https://doi.org/10.1021/acs.molpharmaceut.8b01261
Janssens, S., & Van den Mooter, G. (2009). Review: physical chemistry of solid dispersions. Journal of Pharmacy and Pharmacology, 61(12), 1571–1586. https://doi.org/10.1211/jpp/61.12.0001
Kalepu, S., & Nekkanti, V. (2015). Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharmaceutica Sinica B, 5(5), 442–453. https://doi.org/10.1016/j.apsb.2015.07.003
Kasim, N. A., Whitehouse, M., Ramachandran, C., Bermejo, M., Lennernäs, H., Hussain, A. S., Junginger, H. E., Stavchansky, S. A., Midha, K. K., Shah, V. P., & Amidon, G. L. (2003). Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Molecular Pharmaceutics, 1(1), 85–96. https://doi.org/10.1021/MP034006H
Krstić, M., Manić, L., Martić, N., Vasiljević, D., Mračević, S. Đ., Vukmirović, S., & Rašković, A. (2020). Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. European Journal of Pharmaceutical Sciences, 150, 105343. https://doi.org/10.1016/j.ejps.2020.105343
Kuo, Y. C., & Chung, J. F. (2011). Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces, 83(2), 299–306. https://doi.org/10.1016/j.colsurfb.2010.11.037
Lakshman, D., Chegireddy, M., Hanegave, G. K., Sree, K. N., Kumar, N., Lewis, S. A., & Dengale, S. J. (2020a). Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. European Journal of Pharmaceutical Sciences, 142, 105–137. https://doi.org/10.1016/j.ejps.2019.105137
Lakshman, D., Chegireddy, M., Hanegave, G. K., Sree, K. N., Kumar, N., Lewis, S. A., & Dengale, S. J. (2020b). Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. European Journal of Pharmaceutical Sciences, 142, 105–137. https://doi.org/10.1016/j.ejps.2019.105137
Li, N., Mosquera-Giraldo, L. I., Borca, C. H., Ormes, J. D., Lowinger, M., Higgins, J. D., Slipchenko, L. V, & Taylor, L. S. (2016). A Comparison of the Crystallization Inhibition Properties of Bile Salts. Crystal Growth and Design, 16(12), 7286–7300. https://doi.org/10.1021/acs.cgd.6b01470
Li, S., Madan, P., & Lin, S. (2017). Effect of ionization of drug on drug solubilization in SMEDDS prepared using Capmul MCM and caprylic acid. Asian Journal of Pharmaceutical Sciences, 12(1), 73–82. https://doi.org/10.1016/j.ajps.2016.10.001
Lokamatha, K. M., Kumar, S. M. S., & Rao, N. R. (2011). Enhancement of solubility and dissolution rate of nevirapine by solid dispersion technique using dextran: preparation and in vitro evaluation. International Journal of Pharmaceutical Research & Development, 2, 1–8.
Lopes, C. M., Lobo, J. M. S., Costa, P., Manuel, J., Lobo, S., & Costa, P. (2005). Formas Farmacêuticas de liberação modificada: polímeros hidrofílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143–154.
Mamatha, T., Naseha, Anitha, N., & Qureshi, H. K. (2017). Development of Nevirapine Tablets by Direct Compression Method Using Solid Dispersion Technique. Journal of Pharmaceutical Research, 16(1), 72. https://doi.org/10.18579/jpcrkc/2017/16/1/112482
Meenakshi, & Khan, A. D. (2017). Formulation and Evaluation of Solid Dispersion of Furosemide in Poly vinyl Pyrollidone K 30. International Journal of ChemTech Research, 10(4), 160–171.
Monschke, M., & Wagner, K. G. (2019). Amorphous solid dispersions of weak bases with pH-dependent soluble polymers to overcome limited bioavailability due to gastric pH variability – An in-vitro approach. International Journal of Pharmaceutics, 564(1), 162–170. https://doi.org/10.1016/j.ijpharm.2019.04.034
Moretton, M. A., Cohen, L., Lepera, L., Bernabeu, E., Taira, C., Höcht, C., & Chiappetta, D. A. (2014). Enhanced oral bioavailability of nevirapine within micellar nanocarriers compared with Viramune®. Colloids and Surfaces B: Biointerfaces, 122, 56–65. https://doi.org/10.1016/j.colsurfb.2014.06.046
Mui, P. W., Jacober, S. P., Hargrave, K. D., & Adams, J. (1992a). Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. Journal of Medicinal Chemistry, 35(1), 201–202. https://doi.org/10.1021/jm00079a029
Mui, P. W., Jacober, S. P., Hargrave, K. D., & Adams, J. (1992b). Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. Journal of Medicinal Chemistry, 35(1), 201–202. https://doi.org/10.1021/jm00079a029
Pandi, P., Bulusu, R., Kommineni, N., Khan, W., & Singh, M. (2020). Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. In International Journal of Pharmaceutics (Vol. 586, p. 119560). Elsevier B.V. https://doi.org/10.1016/j.ijpharm.2020.119560
Penzel, E., Rieger, J., & Schneider, H. (1997). The glass transition temperature of random copolymers: 1. Experimental data and the Gordon-Taylor equation. Polymer, 38, 325–327.
Punčochová, K., Vukosavljevic, B., Hanuš, J., Beránek, J., Windbergs, M., & Štěpánek, F. (2016). Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 101, 119–125. https://doi.org/10.1016/J.EJPB.2016.02.001
Raina, S. A., Zhang, G. G. Z., Alonzo, D. E., Wu, J., Zhu, D., Catron, N. D., Gao, Y., & Taylor, L. S. (2014). Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. Journal of Pharmaceutical Sciences, 103(9), 2736–2748. https://doi.org/10.1002/jps.23826
Raju, A., Reddy, A. J., Satheesh, J., & Jithan, A. v. (2014). Preparation and Characterisation of Nevirapine Oral Nanosuspensions. Indian Journal of Pharmaceutical Sciences, 76(1), 62–71. www.ijpsonline.com
Ranga Rao, K. V, & Devi, K. P. (1988). Swelling controlled release systems: recent development and application. International Journal of Pharmaceutics, 48(1–3), 1–13.
Saboo, S., Kestur, U. S., Flaherty, D. P., & Taylor, L. S. (2020a). Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Molecular Pharmaceutics, 17(4), 1261–1275. https://doi.org/10.1021/ACS.MOLPHARMACEUT.9B01272/SUPPL_FILE/MP9B01272_SI_001.PDF
Saboo, S., Kestur, U. S., Flaherty, D. P., & Taylor, L. S. (2020b). Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Molecular Pharmaceutics, 17(4), 1261–1275. https://doi.org/10.1021/ACS.MOLPHARMACEUT.9B01272/SUPPL_FILE/MP9B01272_SI_001.PDF
Schver, G. C. R. M., & Lee, P. I. (2018). Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Molecular Pharmaceutics, 15(5), 2017–2026. https://doi.org/10.1021/acs.molpharmaceut.8b00162
Sevam, R. P., & Kulkarni, P. K. (2014). Design and Evaluation of Self Nanoemulsifying Systems for Poorly Water Soluble HIV. Journal of PharmaSciTech, 4(1), 23–28.
Shegokar, R., & Singh, K. K. (2011). Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 421(2), 341–352. https://doi.org/10.1016/j.ijpharm.2011.09.041
Shi, Q., Chen, H., Wang, Y., Wang, R., Xu, J., & Zhang, C. (2022). Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics, 14(8). https://doi.org/10.3390/pharmaceutics14081747
Shi, Q, Chen, H., Wang, Y., Wang, R., Xu, J., Zhang, C., Shi, Q., Chen, H., Wang, Y., Wang, R., Xu, J., & Zhang, C. (2022). Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022, Vol. 14, Page 1747, 14(8), 1747. https://doi.org/10.3390/PHARMACEUTICS14081747
Sun, D. D., & Lee, P. I. (2013). Evolution of supersaturation of amorphous pharmaceuticals: The effect of rate of supersaturation generation. Molecular Pharmaceutics, 10(11), 4330–4346. https://doi.org/10.1021/mp400439q
Sun, D. D., & Lee, P. I. (2015a). Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Journal of Controlled Release, 211, 85–93. https://doi.org/10.1016/j.jconrel.2015.06.004
Sun, D. D., & Lee, P. I. (2015b). Evolution of supersaturation of amorphous pharmaceuticals: Nonlinear rate of supersaturation generation regulated by matrix diffusion. Molecular Pharmaceutics, 12(4), 1203–1215. https://doi.org/10.1021/mp500711c
Sun, D. D., & Lee, P. I. (2015c). Haste Makes Waste: The Interplay Between Dissolution and Precipitation of Supersaturating Formulations. AAPS Journal, 17(6), 1317–1326. https://doi.org/10.1208/s12248-015-9825-6
Tambosi, G., Coelho, P. F., Soares, L., Lenschow, I. C. S., Zétola, M., Stulzer, H. K., & Pezzini, B. R. (2018). Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Revista Materia, 23(4). https://doi.org/10.1590/s1517-707620180004.0558
Trasi, N. S., & Taylor, L. S. (2015). Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs—Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products. Journal of Pharmaceutical Sciences, 104(8), 2583–2593.
Varshosaz, J., Taymouri, S., Jafari, E., Jahanian-Najafabadi, A., & Taheri, A. (2018). Formulation and characterization of cellulose acetate butyrate nanoparticles loaded with nevirapine for HIV treatment. Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2018.08.020
Wypych, G. (2012). PVP poly(N-vinyl pyrrolidone). In Handbook of Polymers (pp. 628–630). Elsevier. https://doi.org/10.1016/B978-1-895198-47-8.50185-5
Zhang, X., Xing, H., Zhao, Y., & Ma, Z. (2018). Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 10(3). https://doi.org/10.3390/pharmaceutics10030074
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Kayque Almeida dos Santos; Lucas José de Alencar Danda; Thaísa Cardoso de Oliveira; José Lamartine Soares-Sobrinho; Monica Felts de La Roca Soares
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.