O impacto do carregamento de fármaco na dissolução e difusão: um estudo de caso com dispersões sólidas amorfas de nevirapina

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36117

Palavras-chave:

Sistema de liberação de medicamentos; Nevirapina; Dissolução; Permeabilidade; Antirretroviral.

Resumo

Dispersões sólidas amorfas (DSA) são uma alternativa viável para aumentar a solubilidade cinética de drogas mal solúveis em água. No entanto, há pouca discussão sobre o impacto do carregamento de drogas na taxa de dissolução e difusão de drogas em toda a membrana gerada pela supersaturação. Então, obteve-se dispersões sólidas amorfas com nevirapina e polivinilpirrolidona K-30 por método de evaporação de solvente utilizando diferentes cargas de drogas (10%, 15% e 20% p/p). Análise térmica, Espectroscopia de Infravermelho com Transformada de Fourier e Difração de Raios-X caracterizaram os DSA, indicando que houve uma boa compatibilidade entre os componentes, estabilizando a droga em seu estado amorfo. As interações intermoleculares impactaram no desempenho in vitro dos DSA, onde foram avaliadas para testes de dissolução em diferentes condições e estudos de permeabilidade. Todos os sistemas amorfos tiveram um incremento na solubilidade aquosa em comparação apenas com nevirapina, embora a dispersão sólida 10% (DS 10) manteve a supersaturação de drogas em concentrações muito altas por mais tempo, impedindo a recristalização da droga, tendo o maior fluxo de drogas na membrana e mais interações intermoleculares entre os componentes. Portanto, grandes quantidades do polímero são necessárias para a estabilidade da droga amorfa, devido ao aumento do número de interações intermoleculares.

Referências

Ahire, B. R., Rane, B. R., Bakliwal, S. R., Pawar, S. P., College, P. S. G. V. P. M., & Nandurbar, D. (2010). Solubility Enhancement of Poorly Water Soluble Drug by Solid Dispersion Techniques. International Journal of PharmTech Research, 2(3), 2007–2015.

Alhalaweh, A., Alzghoul, A., Mahlin, D., & Bergström, C. A. S. (2015). Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. International Journal of Pharmaceutics, 495(1), 312–317. https://doi.org/10.1016/j.ijpharm.2015.08.101

Ayala, A. P., Siesler, H. W., Wardell, S. M. S. V., Boechat, N., Dabbene, V., & Cuffini, S. L. (2007a). Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine. Journal of Molecular Structure, 828(1–3), 201–210. https://doi.org/10.1016/j.molstruc.2006.05.055

Ayala, A. P., Siesler, H. W., Wardell, S. M. S. V., Boechat, N., Dabbene, V., & Cuffini, S. L. (2007b). Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine. Journal of Molecular Structure, 828(1–3), 201–210. https://doi.org/10.1016/j.molstruc.2006.05.055

Baghel, S., Cathcart, H., & O’Reilly, N. J. (2016). Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. European Journal of Pharmaceutics and Biopharmaceutics, 107, 16–31. https://doi.org/10.1016/j.ejpb.2016.06.024

Bhujbal, S. v., Mitra, B., Jain, U., Gong, Y., Agrawal, A., Karki, S., Taylor, L. S., Kumar, S., & (Tony) Zhou, Q. (2021). Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B, 11(8), 2505–2536. https://doi.org/10.1016/J.APSB.2021.05.014

Caira, M. R., Bourne, S. A., Samsodien, H., Engel, E., Liebenberg, W., Stieger, N., & Aucamp, M. (2012). Co-crystals of the antiretroviral nevirapine: Crystal structures, thermal analysis and dissolution behaviour. CrystEngComm, 14(7), 2541–2551. https://doi.org/10.1039/c2ce06507j

Chadha, R., Arora, P., Saini, A., & Jain, D. S. (2010). Solvated Crystalline Forms of Nevirapine: Thermoanalytical and Spectroscopic Studies. AAPS PharmSciTech, 11(3), 1328–1339. https://doi.org/10.1208/s12249-010-9511-z

Charalabidis, A., Sfouni, M., Bergström, C., & Macheras, Panos. (2019). The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines. International Journal of Pharmaceutics, 566, 264–281. https://doi.org/10.1016/j.ijpharm.2019.05.041

Craig, D. Q. M. (2002). The mechanisms of drug release from solid dispersions in water-soluble polymers. In International Journal of Pharmaceutics (Vol. 231, Issue 2, pp. 131–144). Elsevier. https://doi.org/10.1016/S0378-5173(01)00891-2

Danda, L. J. de A., Batista, L. de M., Melo, V. C. S., Soares Sobrinho, J. L., & Soares, M. F. de L. R. (2019). Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. European Journal of Pharmaceutical Sciences, 133, 79–85. https://doi.org/10.1016/J.EJPS.2019.03.012

Datta, A., Ghosh, N. S., Gosh, S., Samanta, T., & Das, R. C. (2011). Enhancement of Solubility and Dissolution Profile of Nevirapine By Solid Dispersion Technique. International Journal of Chemistry Research, 2(3), 53–58.

Djuris, J., Nikolakakis, I., Ibric, S., Djuric, Z., & Kachrimanis, K. (2013). Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 228–237. https://doi.org/10.1016/j.ejpb.2012.12.018

Figueirêdo, C. B. M., Nadvorny, D., Vieira, A. C. Q. de M., Schver, G. C. R. de M., Soares Sobrinho, J. L., Rolim Neto, P. J., Lee, P. I., & Soares, M. F. de L. R. (2018). Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 119, 208–218. https://doi.org/10.1016/j.ejps.2018.04.024

Frank, K. J., Rosenblatt, K. M., Westedt, U., Hölig, P., Rosenberg, J., Mägerlein, M., Fricker, G., & Brandl, M. (2012). Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: True supersaturation vs. apparent solubility enhancement. International Journal of Pharmaceutics, 437(1–2), 288–293. https://doi.org/10.1016/j.ijpharm.2012.08.014

Grohganz, H., Priemel, P. A., Löbmann, K., Nielsen, L. H., Laitinen, R., Mullertz, A., Van den Mooter, G., & Rades, T. (2014). Refining stability and dissolution rate of amorphous drug formulations. Expert Opinion on Drug Delivery, 11(6), 977–989. https://doi.org/10.1517/17425247.2014.911728

Guan, J., Jin, L., Liu, Q., Xu, H., Wu, H., Zhang, X., & Mao, S. (2019). Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. European Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.ejps.2019.105043

Hate, S. S., Reutzel-Edens, S. M., & Taylor, L. S. (2019). Insight into Amorphous Solid Dispersion Performance by Coupled Dissolution and Membrane Mass Transfer Measurements [Research-article]. Molecular Pharmaceutics, 16(1), 448–461. https://doi.org/10.1021/acs.molpharmaceut.8b01117

Ilevbare, G. A., & Taylor, L. S. (2013). Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: Implications for solubility enhancing formulations. Crystal Growth and Design, 13(4), 1497–1509. https://doi.org/10.1021/cg301679h

Indulkar, A. S., Gao, Y., Raina, S. A., Zhang, G. G. Z., & Taylor, L. S. (2016). Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics, 13(6), 2059–2069. https://doi.org/10.1021/acs.molpharmaceut.6b00202

Indulkar, A. S., Lou, X., Zhang, G. G. Z., & Taylor, L. S. (2019). Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Molecular Pharmaceutics, 16(3), 1327–1339. https://doi.org/10.1021/acs.molpharmaceut.8b01261

Janssens, S., & Van den Mooter, G. (2009). Review: physical chemistry of solid dispersions. Journal of Pharmacy and Pharmacology, 61(12), 1571–1586. https://doi.org/10.1211/jpp/61.12.0001

Kalepu, S., & Nekkanti, V. (2015). Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharmaceutica Sinica B, 5(5), 442–453. https://doi.org/10.1016/j.apsb.2015.07.003

Kasim, N. A., Whitehouse, M., Ramachandran, C., Bermejo, M., Lennernäs, H., Hussain, A. S., Junginger, H. E., Stavchansky, S. A., Midha, K. K., Shah, V. P., & Amidon, G. L. (2003). Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Molecular Pharmaceutics, 1(1), 85–96. https://doi.org/10.1021/MP034006H

Krstić, M., Manić, L., Martić, N., Vasiljević, D., Mračević, S. Đ., Vukmirović, S., & Rašković, A. (2020). Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. European Journal of Pharmaceutical Sciences, 150, 105343. https://doi.org/10.1016/j.ejps.2020.105343

Kuo, Y. C., & Chung, J. F. (2011). Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces, 83(2), 299–306. https://doi.org/10.1016/j.colsurfb.2010.11.037

Lakshman, D., Chegireddy, M., Hanegave, G. K., Sree, K. N., Kumar, N., Lewis, S. A., & Dengale, S. J. (2020a). Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. European Journal of Pharmaceutical Sciences, 142, 105–137. https://doi.org/10.1016/j.ejps.2019.105137

Lakshman, D., Chegireddy, M., Hanegave, G. K., Sree, K. N., Kumar, N., Lewis, S. A., & Dengale, S. J. (2020b). Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. European Journal of Pharmaceutical Sciences, 142, 105–137. https://doi.org/10.1016/j.ejps.2019.105137

Li, N., Mosquera-Giraldo, L. I., Borca, C. H., Ormes, J. D., Lowinger, M., Higgins, J. D., Slipchenko, L. V, & Taylor, L. S. (2016). A Comparison of the Crystallization Inhibition Properties of Bile Salts. Crystal Growth and Design, 16(12), 7286–7300. https://doi.org/10.1021/acs.cgd.6b01470

Li, S., Madan, P., & Lin, S. (2017). Effect of ionization of drug on drug solubilization in SMEDDS prepared using Capmul MCM and caprylic acid. Asian Journal of Pharmaceutical Sciences, 12(1), 73–82. https://doi.org/10.1016/j.ajps.2016.10.001

Lokamatha, K. M., Kumar, S. M. S., & Rao, N. R. (2011). Enhancement of solubility and dissolution rate of nevirapine by solid dispersion technique using dextran: preparation and in vitro evaluation. International Journal of Pharmaceutical Research & Development, 2, 1–8.

Lopes, C. M., Lobo, J. M. S., Costa, P., Manuel, J., Lobo, S., & Costa, P. (2005). Formas Farmacêuticas de liberação modificada: polímeros hidrofílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143–154.

Mamatha, T., Naseha, Anitha, N., & Qureshi, H. K. (2017). Development of Nevirapine Tablets by Direct Compression Method Using Solid Dispersion Technique. Journal of Pharmaceutical Research, 16(1), 72. https://doi.org/10.18579/jpcrkc/2017/16/1/112482

Meenakshi, & Khan, A. D. (2017). Formulation and Evaluation of Solid Dispersion of Furosemide in Poly vinyl Pyrollidone K 30. International Journal of ChemTech Research, 10(4), 160–171.

Monschke, M., & Wagner, K. G. (2019). Amorphous solid dispersions of weak bases with pH-dependent soluble polymers to overcome limited bioavailability due to gastric pH variability – An in-vitro approach. International Journal of Pharmaceutics, 564(1), 162–170. https://doi.org/10.1016/j.ijpharm.2019.04.034

Moretton, M. A., Cohen, L., Lepera, L., Bernabeu, E., Taira, C., Höcht, C., & Chiappetta, D. A. (2014). Enhanced oral bioavailability of nevirapine within micellar nanocarriers compared with Viramune®. Colloids and Surfaces B: Biointerfaces, 122, 56–65. https://doi.org/10.1016/j.colsurfb.2014.06.046

Mui, P. W., Jacober, S. P., Hargrave, K. D., & Adams, J. (1992a). Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. Journal of Medicinal Chemistry, 35(1), 201–202. https://doi.org/10.1021/jm00079a029

Mui, P. W., Jacober, S. P., Hargrave, K. D., & Adams, J. (1992b). Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. Journal of Medicinal Chemistry, 35(1), 201–202. https://doi.org/10.1021/jm00079a029

Pandi, P., Bulusu, R., Kommineni, N., Khan, W., & Singh, M. (2020). Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. In International Journal of Pharmaceutics (Vol. 586, p. 119560). Elsevier B.V. https://doi.org/10.1016/j.ijpharm.2020.119560

Penzel, E., Rieger, J., & Schneider, H. (1997). The glass transition temperature of random copolymers: 1. Experimental data and the Gordon-Taylor equation. Polymer, 38, 325–327.

Punčochová, K., Vukosavljevic, B., Hanuš, J., Beránek, J., Windbergs, M., & Štěpánek, F. (2016). Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 101, 119–125. https://doi.org/10.1016/J.EJPB.2016.02.001

Raina, S. A., Zhang, G. G. Z., Alonzo, D. E., Wu, J., Zhu, D., Catron, N. D., Gao, Y., & Taylor, L. S. (2014). Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. Journal of Pharmaceutical Sciences, 103(9), 2736–2748. https://doi.org/10.1002/jps.23826

Raju, A., Reddy, A. J., Satheesh, J., & Jithan, A. v. (2014). Preparation and Characterisation of Nevirapine Oral Nanosuspensions. Indian Journal of Pharmaceutical Sciences, 76(1), 62–71. www.ijpsonline.com

Ranga Rao, K. V, & Devi, K. P. (1988). Swelling controlled release systems: recent development and application. International Journal of Pharmaceutics, 48(1–3), 1–13.

Saboo, S., Kestur, U. S., Flaherty, D. P., & Taylor, L. S. (2020a). Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Molecular Pharmaceutics, 17(4), 1261–1275. https://doi.org/10.1021/ACS.MOLPHARMACEUT.9B01272/SUPPL_FILE/MP9B01272_SI_001.PDF

Saboo, S., Kestur, U. S., Flaherty, D. P., & Taylor, L. S. (2020b). Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Molecular Pharmaceutics, 17(4), 1261–1275. https://doi.org/10.1021/ACS.MOLPHARMACEUT.9B01272/SUPPL_FILE/MP9B01272_SI_001.PDF

Schver, G. C. R. M., & Lee, P. I. (2018). Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Molecular Pharmaceutics, 15(5), 2017–2026. https://doi.org/10.1021/acs.molpharmaceut.8b00162

Sevam, R. P., & Kulkarni, P. K. (2014). Design and Evaluation of Self Nanoemulsifying Systems for Poorly Water Soluble HIV. Journal of PharmaSciTech, 4(1), 23–28.

Shegokar, R., & Singh, K. K. (2011). Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 421(2), 341–352. https://doi.org/10.1016/j.ijpharm.2011.09.041

Shi, Q., Chen, H., Wang, Y., Wang, R., Xu, J., & Zhang, C. (2022). Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics, 14(8). https://doi.org/10.3390/pharmaceutics14081747

Shi, Q, Chen, H., Wang, Y., Wang, R., Xu, J., Zhang, C., Shi, Q., Chen, H., Wang, Y., Wang, R., Xu, J., & Zhang, C. (2022). Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022, Vol. 14, Page 1747, 14(8), 1747. https://doi.org/10.3390/PHARMACEUTICS14081747

Sun, D. D., & Lee, P. I. (2013). Evolution of supersaturation of amorphous pharmaceuticals: The effect of rate of supersaturation generation. Molecular Pharmaceutics, 10(11), 4330–4346. https://doi.org/10.1021/mp400439q

Sun, D. D., & Lee, P. I. (2015a). Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Journal of Controlled Release, 211, 85–93. https://doi.org/10.1016/j.jconrel.2015.06.004

Sun, D. D., & Lee, P. I. (2015b). Evolution of supersaturation of amorphous pharmaceuticals: Nonlinear rate of supersaturation generation regulated by matrix diffusion. Molecular Pharmaceutics, 12(4), 1203–1215. https://doi.org/10.1021/mp500711c

Sun, D. D., & Lee, P. I. (2015c). Haste Makes Waste: The Interplay Between Dissolution and Precipitation of Supersaturating Formulations. AAPS Journal, 17(6), 1317–1326. https://doi.org/10.1208/s12248-015-9825-6

Tambosi, G., Coelho, P. F., Soares, L., Lenschow, I. C. S., Zétola, M., Stulzer, H. K., & Pezzini, B. R. (2018). Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Revista Materia, 23(4). https://doi.org/10.1590/s1517-707620180004.0558

Trasi, N. S., & Taylor, L. S. (2015). Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs—Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products. Journal of Pharmaceutical Sciences, 104(8), 2583–2593.

Varshosaz, J., Taymouri, S., Jafari, E., Jahanian-Najafabadi, A., & Taheri, A. (2018). Formulation and characterization of cellulose acetate butyrate nanoparticles loaded with nevirapine for HIV treatment. Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2018.08.020

Wypych, G. (2012). PVP poly(N-vinyl pyrrolidone). In Handbook of Polymers (pp. 628–630). Elsevier. https://doi.org/10.1016/B978-1-895198-47-8.50185-5

Zhang, X., Xing, H., Zhao, Y., & Ma, Z. (2018). Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 10(3). https://doi.org/10.3390/pharmaceutics10030074

Downloads

Publicado

23/10/2022

Como Citar

SANTOS, K. A. dos .; DANDA, L. J. de A.; OLIVEIRA, T. C. de; SOARES-SOBRINHO, J. L. .; SOARES, M. F. de L. R. . O impacto do carregamento de fármaco na dissolução e difusão: um estudo de caso com dispersões sólidas amorfas de nevirapina . Research, Society and Development, [S. l.], v. 11, n. 14, p. e168111436117, 2022. DOI: 10.33448/rsd-v11i14.36117. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36117. Acesso em: 24 dez. 2024.

Edição

Seção

Ciências da Saúde