Enxertia em defeitos ósseos periimplantares por deposição polimérica in-situ através caneta 3D – estudo in vitro/ ex vivo

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36234

Palavras-chave:

Bioimpressão; Biopolímeros; Impressão tridimensional; Polímeros.

Resumo

A Regeneração Óssea Guiada (ROG) objetiva o ganho ou a manutenção do volume ósseo, graças ao uso de membranas de barreira que atuam para tal finalidade. Esta pesquisa visa a enxertia de filamentos poliméricos em defeitos ósseos periimplantares pré-formados em côndilos suínos in vitro/ex vivo, estabilizados e enxertados com filamentos poliméricos poli(ácido lático) (PLA) e poli(álcool vinílico) (PVA), impressos in-situ com caneta de impressão 3D. Foram criados defeitos ósseos de 8 mm de diâmetro e 7 mm de profundidade em 9 côndilos suínos e instalados implantes cônicos de 3.5x10 mm. Após a formação da região de gap ósseo, acima da ancoragem óssea apical, os Corpos de prova (Cp) foram divididos conforme o preenchimento polimérico utilizado: G.Control – sem preenchimento no gap ósseo; G.PLA – arcabouço de PLA e G.PVA – arcabouço de PVA. Em outra etapa, foram comparadas as membranas de PVA e PLA 3D com a membrana de politetrafluoretileno denso (PTFE-d). Posteriormente os Cps foram analisados no microtomógrafo SkyScan 1172 (Bruker-μCT, Kontich, Bélgica). A análise correspondente à porosidade total não revelou diferença estatística entre G.Control (70,44%), G.PLA (59,99%) e G.PVA (57,66%). Já a porosidade fechada revelou diferença estatística entre G.Control (75.509%) e G.PVA (189,199%) e entre G.PVA e G.PLA (79.093%). Este estudo demostrou a possibilidade dos filamentos poliméricos de PVA e PLA preencherem os defeitos ósseos criados, revelando um contato íntimo sobre a superfície dos implantes utilizados. Os dados sugeriram uma maior porosidade do filamento de PVA quando aplicado em defeitos ósseos ou na forma de membrana.

Biografia do Autor

Alícia Fabro Moraes, Rio Grande University

 School of Dentistry – Rio Grande University/Duque de Caxias.

Ândrea Leite da Silva Lourençone, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias.

Vivyan Cordeiro Goulart, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias

Ellen dos Santos, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias

Walas Cazzassa Vieira, Rio Grande University

School of Dentistry – Rio Grande University/Duque de Caxias

Marcelo Ferreira da Silva, Rio Grande University

Graduate Program in Dentistry – Rio Grande University/Duque de Caxias

Referências

Araujo, L. C., Dos Santos, Y. B. C., Leite, R. S., & Heggendorn, F. L. (2022). Extraction associated with L-PRF grafting and immediate installation - Case reports. Research, Society and Development, 11(3), e47211326563. doi.org/10.33448/rsd-v11i3.26563

Basa, B., Jakab, G., Kállai-Szabó, N., Borbás, B., Fülőp, V., Balogh, E., & Antal, I. (2021). Evaluation of biodegradale PVA-Based 3D Printed Carriers during Dissolution. Materials, 14(6), 1350. doi.org/10.3390/ma14061350

Calore, A. R., Srinivas, V., Anand, S., Abillos-sanches, A., Looijmans, S. F. S. P., Van Breemen, L. C. A., & Moroni, L. (2021). Shaping and properties of thermoplastic scaffolds in tissue regeneration: The efect of thermal history on polymer crystallization, surface characteristics and cell fate. Journal of Materials Research, 36(19), 3914-35.10.1557/s43578-021-00403-2

Consolaro, A., Carvalho, R. S., Francischone Jr, C. E., Consolaro, M. F. M. O., & Francishone, C. E. (2010). Saucerização de implantes osseointegrados e o planejamento de casos clínicos ortodônticos simultâneos. Dental Press J. Orthod, 15(3), 19-30. doi.org/10.1590/S2176-94512010000300003

Costa, V. C. F., Bianchi, C. M. P. C., Filho, A. C. G., Crepald, M. L. S., Oliveira, B. L. S., Aguiar, A. P., & Deps, T. D. (2021). Membranas utilizadas em regeneração óssea guiada (ROG): Características e indicações. Revista Faipe, 11(1), 48-57. https://www.revistafaipe.com.br/index.php/RFAIPE/article/view/230

De Oliveira, A. A. R., De Oliveira, J. E., Oréfice R. L., Mansur H. S., & Pereira M. M. (2007). Avaliação das propriedades mecânicas de espumas híbridas de vidro bioativo/álcool polivinílico para aplicação em engenharia de tecidos. Revista Matéria, 12(1), 140 – 149. doi.org/10.1590/S1517-70762007000100018

Herford, A. S., & Dean, J. S. (2011). Complications in bonegrafting. Oral Maxillo fac Surg Clin North Am., 23(3), 433-42. 10.1016/j.coms.2011.04.004.

Ho, S. T., & Hutmacher, D. W. (2006). A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 27(8), 1362-76. doi.org/10.1016/j.biomaterials.2005.08.035

Maia, M., Klein, E. S., Monje, T. V., & Paguosa, C. (2010). Reconstrução da estrutura facial por biomateriais: Revisão de literatura. Rev. Bras. Cir. Plást., 25(3), 566-72. doi.org/10.1590/S1983-51752010000300029

Mantovani Junior, M. (2006). Análise histológica de defeitos ósseos preenchidos com biomateriais e associados a implantes osseointegrados. Estudo em cães (Dissertação de mestrado). Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara, São Paulo, SP, Brasil. http://hdl.handle.net/11449/96180

Maridati, P. C., Cremonesi, S., Fontana, F., Cicciù, M., & Maiorana, C. (2016). Management of d-PTFE Membrane Exposure for Having Final Clinical Success. Journal of Oral Implantology, 42(3), 289-91. 10.1563/aaid-joi-D-15-00074

Moncal, K. K., Gudapati, H., Godzik, K. P., Heo, D.N., Kang, Y., Rizk, E., & Ozbolat, I. T. (2021). Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillo facial Reconstruction. Atty. Funct. Specialization, 31, 1-15. doi: 10.1002/adfm.202010858

Okamoto, T., Perri, A. C. C., & Milanezi, L. A. (1973) Implante de poliuretano em alvéolos dentais. Estudos histológicos em ratos. Rev. Fac. Odontol. Aracatuba, 2(1), 19-25. <http://hdl.handle.net/11449/219029>.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Prado, F. A., Anbinder, A. L., Jaime, A. P., Lima, A. P., Balducci, I., & Rocha, R. F. (2006). Defeitos ósseos em tíbia de ratos: padronização do modelo experimental. Rev. odontol. Univ. Cid. Sao Paulo, 18(1), 7-13.

Prasadh, S., Suresh, S., & Wong, R. (2018). Osteogenic of Graphene in bone tissue engineering scaffolds. Materials, 11(8), 1430. doi.org/10.3390/ma11081430

Rakhmatia, Y. D., Ayukawa, Y., Furuhashi, A., & Koyano, K. (2013). Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodontic Res., 57(1), 3-14. 10.1016/j.jpor.2012.12.001.

Santana. L., Alves, J. L., Netto, A. C. S., & Merlini, C. (2018). Estudo comparativo entre PEGT e PLA para impressão 3D através de caracterização térmica, química e mecânica. Revista Matéria, 23(4), e-12267. doi.org/10.1590/S1517-707620180004.0601

Sanz, M., Dahin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., & Schliephake, H. (2019). Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region.: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol, 46(21): 82-91, 2019. 10.1111/jcpe.13123

Wang Y., Gao, M., Wang, D., Sun, L., & Webster, T. J. (2020). Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing. International Journal of Nanomedicine, 15, 215–226.

Warrer, K., Karring, T., & Gotfredsen, K. (1993). Formação do ligamento periodontal em torno de diferentes tipos de implantes dentários de titânio. I. O sistema de implante tipo parafuso auto-roscante. Revista de Periodontologia, 64(1), 29-34. doi.org/10.1902/jop.1993.64.1.29

Downloads

Publicado

27/10/2022

Como Citar

MORAES, A. F. .; LOURENÇONE, Ândrea L. da S. .; GOULART, V. C.; SANTOS, E. dos .; VIEIRA, W. C.; SILVA, M. F. da; HEGGENDORN, F. L. Enxertia em defeitos ósseos periimplantares por deposição polimérica in-situ através caneta 3D – estudo in vitro/ ex vivo. Research, Society and Development, [S. l.], v. 11, n. 14, p. e301111436234, 2022. DOI: 10.33448/rsd-v11i14.36234. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36234. Acesso em: 29 nov. 2024.

Edição

Seção

Ciências da Saúde