Determinação dos coeficientes do Método das Diferenças Finitas
DOI:
https://doi.org/10.33448/rsd-v12i2.39946Palavras-chave:
Determinação de coeficientes; Equações Diferenciais Ordinárias; Método das Diferenças Finitas; Método numérico.Resumo
Este artigo tem como objetivo apresentar um procedimento para determinar os coeficientes do Método das Diferenças Finitas (MDF). A abordagem contida no trabalho consiste em aproximar derivadas de diferentes ordens a partir dos primeiros termos da Série de Taylor, obtendo coeficientes que são utilizados na construção da Equação de Diferenças Finitas (EDF), a qual é utilizada para aproximar a solução de uma Equação Diferencial Ordinária (EDO). Para a determinação desses coeficientes foi desenvolvido um processo que toma como base os casos das derivadas primeiras de uma função e generaliza para a derivada de enésima ordem. A partir deles é possível expandir o método numérico de estudo para aproximar a solução de uma EDO de ordem qualquer. Para exemplificar as aplicações do MDF, foram feitas as descrições de problemas físicos que recaem em equações diferenciais e apresentadas as soluções aproximadas, onde, em cada caso, foi necessário construir a EDF associada à EDO e resolver o sistema linear gerado por essa EDF. Além disso, para efeito de comparação, foram apresentados os valores exatos das soluções para verificar a diferença entre a solução aproximada e a solução exata.
Referências
Alitolef, S. S. (2011). Algumas Aplicações das Equações Diferenciais. Universidade Federal de Rondônia – UNIR, Paraná.
Alves, D. (2021). Teoria de vigas de Euler Bernoulli: Aplicações de Equações Diferenciais na flexão de vigas. Trabalho de Conclusão de Curso (Licenciatura Plena em Matemática) - Universidade de Pernambuco, Garanhuns.
Aquino, R. M.; Vera-Tutela, C. A. R.; Bastos, J. C. A.; Ventura, S. D.; & Oliveira, R. F. D. (2020). Modelos Matemáticos, Simulação da Produção e Índice Tecnológico de Municípios do Rio de Janeiro. TEMA (são Carlos), 21(TEMA (São Carlos), 2020 21(2)). https://doi.org/10.5540/tema.2020.021.02.0002090209
Bassanezi, R. C.; & Ferreira, W. C. (1988). Equações diferenciais com aplicações. São Paulo: Harbra.
Beer, F. P.; Johnston, E. R.; DeWolf, J. T.; & Mazurek, D. F. (2011). Mecânica dos Materiais. AMGH Editora Ltda, 5ª edição, São Paulo.
Boyce, W. E.; & Diprima, R. C. (2010). Equações Diferenciais Elementares e Problemas de Valores de Contorno, Livros Técnicos e Científicos Editora S.A. LCT, 9ª edição, Rio de Janeiro.
Campos, F. F. (2007). Algoritmos Numéricos. LTC Editora.
Cassemiro, A. A. (2011). Queda dos corpos e Equações Diferenciais num primeiro curso de Cálculo. Monografia (Especialização para professores) – Universidade Federal de Minas Gerais, Belo Horizonte.
Chinchio, A. C. (2012). Introdução às equações diferenciais ordinárias e aplicações. Universidade Estadual Paulista Júlio de Mesquita Filho. São Paulo.
Costa, R. (2010). Um Estudo de Equações Diferenciais Aplicado à Flexão de Vigas. Instituto de Matemática, Estatística e Computação Científica – Unicamp, Campinas.
Cunha, L. M. (2021). Estudo das Equações Diferenciais e Aplicações em Modelos na Física. Universidade Federal de Ouro Preto – UFOP, Minas Gerais.
Fontana, E. (2019). Introdução ao Método de Diferenças Finitas com Aplicações em Engenharia Química. Universidade Federal do Paraná – UFPR, Paraná.
Guidorizzi, H. L. (2013). Um curso de Cálculo: volume 4. Livros Técnicos e Científicos Editora Ltda – LTC, 5ª edição.
Junior, L. C. (2006). Uma aplicação dos métodos dos elementos finitos e diferenças finitas à interação fluido-estrutura. Faculdade de Tecnologia – Universidade de Brasília. Brasília.
Oliveira, E. S. (2023). Simulações de condução de calor unidimensional com o software Maxima. Revista Brasileira De Ensino De Física, 45(Rev. Bras. Ensino Fís., 2023 45). https://doi.org/10.1590/1806-9126-RBEF-2022-0181
Silva, A. A. (2010) Momento de Inércia, de Massa ou de Área? Web Artigos.
Silva, G. R.; & Schlindwein, M. B. (2021). Análise não linear de vigas pelos métodos de Branson com uso do software de elementos finitos. Centro de Ensino Universitário de Brasília (CEUB).
Silva, J. S. (2014). Sobre o problema da variação de temperatura de um corpo. Revista Connection Line.
Silva, M. A. (2014). Modelagem Matemática: Equações diferenciais ordinárias em cursos de graduação. IFSP, São Paulo.
Silva, P. H. G. da.; Moreira, J.; Costa, A. O. S.; & Costa Jr., E. F. (2020). Numerical analysis of the thermal profile inside the wall of a rotary cement kiln. Cerâmica, 66(Cerâmica, 2020 66(380)). https://doi.org/10.1590/0366-69132020663802902
Silva, S. F.; & Soares, A. A. (2011). O método das diferenças finitas aplicado à Teoria das Vigas. Revista UNAMA.
Stewart, J. (2013). Cálculo: volume 2. 7ª edição. São Paulo: Cengage Learning.
Zill, D. G; & Cullen, M. R. (2009). Equações Diferenciais. 3ª ed. Vol. 2. São Paulo.
Zill, D. G. (2016). Equações diferenciais com aplicações em modelagem. 3ª ed. São Paulo: Cengage Learning.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Luciano Cesario da Silva; Paulo Cavalcante do Nascimento Junior
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.