Disbiose intestinal em obesos: Uma revisão de literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v12i4.40980

Palavras-chave:

Microbioma; Prebióticos; Obesidade; Disbiose.

Resumo

A obesidade é caracterizada pelo excedente de tecido adiposo na composição corporal do indivíduo, proveniente de uma ingesta calórica superior ao gasto energético aliado a multifatores com destaque para a genética, o ambiente e o comportamento sedentário. Os hábitos alimentares de uma dieta ocidental (alimentos ricos em gorduras saturadas, açúcares refinados e baixa ingestão de fibras e polifenóis) exerce influência na menor diversidade do filo bacterioidetes, caracterizando o quadro de disbiose intestinal. Este artigo de revisão narrativa teve como objetivo descrever a relação da obesidade com a disbiose relatando alguns aspectos metabólicos da obesidade, e enfatizando as alterações na microbiota intestinal. A disbiose intestinal aliada aos maus hábitos alimentares propicia o enfraquecimento da junção das células de adesão firme no intestino, provocando uma maior permeabilidade intestinal resultante em uma inflamação sistêmica de baixo grau devido ao recrutamento de células imunológicas e o aumento de proteínas inflamatórias [fator de necrose tumoral (TNF-α), interleucina 6 (IL-6)] e espécies reativas de oxigênio (ROS), devido à translocação de bactérias gram-negativas e seus metabólitos tóxicos conhecidos como lipopolissacarídeos (LPS) para a corrente sérica. Em obesos é comum uma menor diversidade microbiana entre os filos caracterizando a disbiose intestinal. Em virtude disso, alguns tratamentos como o emprego de prebióticos e probióticos aliado a uma alimentação balanceada rica em grãos integrais, pobre em açúcares refinados e ácidos graxos saturados pode propiciar o aumento da diversidade do microbioma reduzindo esses marcadores infamatórios, e melhorando parâmetros bioquímicos importantes como a glicemia e os triglicerídeos séricos.

Referências

Ahmad, B., Vohra, M. S., Saleemi, M. A., Serpell, C. J., Fong, I. L., & Wong, E. H. (2021). Brown/beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie, 184, 26-39. 10.1016/j.biochi.2021.01.015.

Ahmad, R., Sorrell, M. F., Batra, S. K., Dhawan, P., & Singh, A. B. (2017). Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunology, 10, 307-317. https://doi.org/10.1038/mi.2016.128.

Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy, 137, 111315. https://DOI.org/10.1016/j.biopha.2021.111315.

An, Y. A., Chen, S., Deng, Y., Wang, Z. V., Funcke, J-B., Shah, M., et al. (2021). The mitochondrial dicarboxylate carrier prevents hepatic lipotoxicity by inhibiting white adipocyte lipolysis. Journal of Hepatology, 75, 387-399. https://DOI.org/10.1016/j.jhep.2021.03.006.

Andremont, A., Cervesi, J., Bandinelli, P-A., Vitry, F., & Gunzburg, J. (2021). Spare and repair the gut microbiota from antibiotic-induced dysbiosis: state-of-the-art. Drug Discovery Today, 26, 2159-2163. 10.1016/j.drudis.2021.02.022.

Andreoli, M. F., Donato, J., Cakir, I., & Perello, M. (2019). Leptin resensitisation: a reversion of leptin-resistant states. Journal of Endocrinology, 241, R81-R96. 10.1530/JOE-18-0606.

Antushevich, H. (2020). Fecal microbiota transplantation in disease therapy. Clinica Chimica Acta, 503, 90-98. https://DOI.org/10.1016/j.cca.2019.12.010.

Bajer, B., Rádiková, Ž., Havranová, A., Žitňanová, I., Vlček, M., Imrich, R., et al. (2019). Effect of 8-weeks intensive lifestyle intervention on LDL and HDL subfractions. Obesity Research & Clinical Practice, 13, 586-593. https://DOI.org/10.1016/j.orcp.2019.10.010.

Barakat, B., & Almeida, M. E. F. (2021). Biochemical and immunological changes in obesity. Archives of Biochemistry and Biophysics, 708, 108951. https://DOI.org/10.1016/j.abb.2021.108951.

Benakis, C., Martin-Gallausiaux, C., Trezzi, J-P., Melton, P., Liesz, A., & Wilmes, P. (2020). The microbiome-gut-brain axis in acute and chronic brain diseases. Current Opinion in Neurobiology, 61, 1-9. https://DOI.org/10.1016/j.conb.2019.11.009.

Bernard, A., Ancel, D., Passilly-Degrace, P., Landrier, J-F., Lagrost, L., & Besnard, P. (2019). A chronic LPS-induced low-grade inflammation fails to reproduce in lean mice the impairment of preference for oily solution found in diet-induced obese mice. Biochimie, 159, 112-121. https://DOI.org/10.1016/j.biochi.2018.08.004.

Butler, M. J. (2021). The role of Western diets and obesity in peripheral immune cell recruitment and inflammation in the central nervous system. Brain, Behavior, & Immunity - Health, 16, 100298. 10.1016/j.bbih.2021.100298.

Casertano, M., Fogliano, V., & Ercolini, D. (2022). Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Research International, 152, 110892. 10.1016/j.foodres.2021.110892.

Cerdó, T., García-Santos, J. A., Bermúdez, M. G., & Campoy, C. (2019). The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients, 11, 635. 10.3390/nu11030635.

Chen, Y., Pan, R., & Pfeifer, A. (2017). Regulation of brown and beige fat by microRNAs. Pharmacology & Therapeutics, 170, 1-7. https://doi.org/10.1016/j.pharmthera.2016.10.004.

Chidambaram, S. B., Essa, M. M., Rathipriya, A. G., Bishir, M., Ray, B., Mahalakshmi, A. M., et al. (2021). Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacology & Therapeutics, 231, 107988. 10.1016/j.pharmthera.2021.107988.

Dailey, F. E., Turse, E. P., Daglilar, E., & Tahan, V. (2019). The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Current Opinion in Pharmacology, 49, 29-33. https://doi.org/10.1016/j.coph.2019.04.008.

Ding, X., Yang, X., & Wang, H. (2020). Methodology, efficacy and safety of fecal microbiota transplantation in treating inflammatory bowel disease. Medicine in Microecology, 6, 100028. https://doi.org/10.1016/j.medmic.2020.100028.

Dodangeh, M., & Dodangeh, M. (2020). Metabolic regulation and the anti-obesity perspectives of brown adipose tissue (BAT); a systematic review. Obesity Medicine, 17, 100163. https://doi.org/10.1016/j.obmed.2019.100163.

Du, Y., Gao, X-R., Peng, L., & Ge, J-F. (2020). Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6, e04097. 10.1016/j.heliyon.2020.e04097.

Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73, 1073-1078. 10.1128/aem.02340-06.

Duque, A. L. R. F., Demarqui, F. M., Santoni, M. M., Zanelli, C. F., Adorno, M. A. T., Milenkovic, D., et al. (2021). Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Research International, 149, 110657. https://doi.org/10.1016/j.foodres.2021.110657.

Fried, S., Wemelle, E., Cani, P. D., & Knauf, C. (2021). Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 197, 108721. https://doi.org/10.1016/j.neuropharm.2021.108721.

Fujimoto, K., Kimura, Y., Allegretti, J. R., Yamamoto, M., Zhang, Y-Z., Katayama, K., et al. (2021). Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology, 160, 2089-2102. https://doi.org/10.1053/j.gastro.2021.02.013.

Gesù, C. M., Matz, L. M., & Buffington, S. A. (2021). Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research, 168, 3-19. https://DOI.org/10.1016/j.neures.2021.05.003.

Ghanbari, M., Maragheh, S. M., Aghazadeh, A., Mehrjuyan, S. R., Hussen, B. M., Shadbad, M. A., et al. (2021). Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. International Immunopharmacology, 96, 107765. 10.1016/j.intimp.2021.107765.

Haran, J. P., & McCormick, B. A. (2021). Aging, frailty, and the microbiome-how dysbiosis influences human aging and disease. Gastroenterology, 160, 507-523. https://doi.org/10.1053/j.gastro.2020.09.060.

Hasan, R. A., Coughlin, L., Poulides, N., Zhan, X., Zia, A., & Koh, A. Y. (2020). Gut microbiota dysbiosis and elevated lipopolysaccharide serum levels are associated with venous thromboembolism in pediatric patients. Blood, 136, 6-7. https://DOI.org/10.1182/blood-2020-134335.

Hills, R. D., Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut microbiome: profound implications for diet and disease. Nutrients, 11, 1613. https://doi.org/10.3390/nu11071613.

Hristov, M., Landzhov, B., & Yakimova, K. (2020). Cafeteria diet-induced obesity reduces leptin-stimulated NADPH-diaphorase reactivity in the hypothalamic arcuate nucleus of rats. Acta Histochemica, 122, 151616. https://doi.org/10.1016/j.acthis.2020.151616.

Kasai, C., Sugimoto, K., Moritani, I., Tanaka, J., Oya, Y., Inoue, H., et al. (2015). Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 15, 1-10. https://doi.org/10.1186/s12876-015-0330-2.

Kendig, M. D., Leigh, S-J., & Morris, M. J. (2021). Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neuroscience & Biobehavioral Reviews, 128, 233-243. https://DOI.org/10.1016/j.neubiorev.2021.05.031.

Kim, Y. A., Keogh, J. B., & Clifton, P. M. (2018). Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews, 31, 35-51. 10.1017/s095442241700018x.

Klepac, K., Georgiadi, A., Tschöp, M., & Herzig, S. (2019). The role of brown and beige adipose tissue in glycaemic control. Molecular Aspects of Medicine, 68, 90-100. https://doi.org/10.1016/j.mam.2019.07.001.

Kong, C., Gao, R., Yan, X., Huang, L., & Qin, H. (2019). Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition, 60, 175-184. 10.1016/j.nut.2018.10.002.

Li, J., Chen, C., Yang, H., & Yang, X. (2021). Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice. Food Research International, 141, 110153. 10.1016/j.foodres.2021.110153.

Liébana-García, R., Olivares, M., Bullich-Vilarrubias, C., López-Almela, I., Romaní-Pérez, M., & Sanz, Y. (2021) The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice & Research Clinical Endocrinology & Metabolism, 35, 101542. 10.1016/j.beem.2021.101542.

Liu, S., Gao, J., Liu, K., & Zhang, H-L. (2021) Microbiota-gut-brain axis and Alzheimer’s disease: Implications of the blood-brain barrier as an intervention target. Mechanisms of Ageing and Development, 199, 111560. https://doi.org/10.1016/j.mad.2021.111560.

Lorenzo, A., Romano, L., Renzo, L., Lorenzo, N., Cenname, G., & Gualtieri, P. (2020). Obesity: A preventable, treatable, but relapsing disease. Nutrition, 71, 110615. 10.1016/j.nut.2019.110615.

Ma, H-D., Zhao, Z-B., Ma, W-T., Liu, Q-Z., Gao, C-Y., Li, L., et al. (2018). Gut microbiota translocation promotes autoimmune cholangitis. Journal of Autoimmunity, 95, 47-57. https://doi.org/10.1016/j.jaut.2018.09.010.

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients, 12, 1474. 10.3390/nu12051474.

Marques, D. O., & Quintilio, M. S. V. (2021). Farmacologia e riscos das drogas para emagrecer. Revista Coleta Científica, 5, 38-49. https://doi.org/10.5281/zenodo.5093482.

Mcmanus, K., & Temples, H. (2021). Obesity in adolescents: prevention and treatment to change their future. The Journal for Nurse Practitioners, 17, 972-978. 10.1016/j.nurpra.2021.04.018.

Molina-Tijeras, J. A., Diez-Echave, P., Vezza, T., Hidalgo-García, L., Ruiz-Malagón, A. J., Rodríguez-Sojo, M. J., et al. (2021). Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacological Research, 167, 105471. https://doi.org/10.1016/j.phrs.2021.105471.

Moonen, M. P. B., Nascimento, E. B. M., & Lichtenbelt, W. D. M. (2019). Human brown adipose tissue: Underestimated target in metabolic disease? Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864, 104-112. 10.1016/j.bbalip.2018.05.012.

Moreira Júnior, R. E., Carvalho, L. M., Reis, D. C., Cassali, G. D., Faria, A. M. C., Maioli, T. U., et al. (2021). Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice. The Journal of Nutritional Biochemistry, 92, 108622. https://doi.org/10.1016/j.jnutbio.2021.108622.

Natividad, J. M., Lamas, B., Pham, H. P., Michel, M-L., Rainteau, D., Bridonneau, C., et al. (2018). Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature Communications, 9, 2802. https://doi.org/10.1038/s41467-018-05249-7.

Nicolucci, A. C., Hume, M. P., Martínez, I., Mayengbam, S., Walter, J., & Reimer, R. A. (2017). Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology, 153, 711-722. 10.1053/j.gastro.2017.05.055.

Oh, Y. J., Nam, K., Kim, Y., Lee, S. Y., Kim, H. S., Kang, J., et al. (2021). Effect of a nutritionally balanced diet comprising whole grains and vegetables alone or in combination with probiotic supplementation on the gut microbiota. Preventive Nutrition and Food Science, 26, 121-131. 10.3746/pnf.2021.26.2.121.

Palmas, V., Pisanu, S., Madau, V., Casula, E., Deledda, A., Cusano, R., et al. (2021). Gut microbiota markers associated with obesity and overweight in Italian adults. Scientific Reports, 11, 5532. https://doi.org/10.1038/s41598-021-84928-w.

Parussolo, G. S., Barakat, B., Ribeiro, M. G. C., Vinha, L. I. L., Santana, B. F., Moreira, M. M., et al. (2022). Manejo da obesidade: uma revisão narrativa dos tratamentos com foco na cirurgia metabólica. Research, Society and Development, 11, 13711326129. 10.33448/rsd-v11i3.26129.

Paz, S. M., Pérez-Pérez, A., Vilariño-García, T., Jiménez-Cortegana, C., Muriana, F. J. G., Millán-Linares, M. C., et al. (2021). Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. The Journal of Nutritional Biochemistry, 89, 108561. https://doi.org/10.1016/j.jnutbio.2020.108561.

Pendyala, S., Walker, J. M., & Holt, P. R. (2012). A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology, 142, 1100-1101. https://doi.org/10.1053/j.gastro.2012.01.034.

Peng, J., Yin, L., & Wang, X. (2021). Central and peripheral leptin resistance in obesity and improvements of exercise. Hormones and Behavior, 133, 105006. https://doi.org/10.1016/j.yhbeh.2021.105006.

Perakakis, N., Farr, O. M., & Mantzoros, C. S. (2021). Leptin in leanness and obesity: Leptin in leanness and obesity: JACC state-of-the-art review. Journal of the American College of Cardiology, 77, 745-760. https://doi.org/10.1016/j.jacc.2020.11.069.

Pérez-Hernández, E. G., Delgado-Coello, B., Luna-Reyes, I., & Mas-Oliva, J. (2021). New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomedicine & Pharmacotherapy, 141, 111890. 10.1016/j.biopha.2021.111890.

Pownall, H. J., Rosales, C., Gillard, B. K., & Gotto Jr, A. M. (2021). High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nature Reviews Cardiology, 18, 712-723. https://doi.org/10.1038/s41569-021-00538-z.

Quintanilha, B. J., Ferreira, L. R. P., Ferreira, F. M., Cunha Neto, E., Sampaio, G. R., & Rogero, M. M. (2020). Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clinical Nutrition, 39, 554-562. https://doi.org/10.1016/j.clnu.2019.02.042.

Rampelli, S., Guenther, K., Turroni, S., Wolters, M., Veidebaum, T., Kourides, Y., et al. (2018). Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Communications Biology, 1, 1-11. https://doi.org/10.1038/s42003-018-0221-5.

Ranjbar, R., Vahdati, S. N., Tavakoli, S., Khodaie, R., & Behboudi, H. (2021). Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomedicine & Pharmacotherapy, 141, 111817. 10.1016/j.biopha.2021.111817.

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., et al. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7, 1-22. 10.3390/microorganisms7010014.

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104, S1-63. 10.1017/s0007114510003363.

Saiyasit, N., Chunchai, T., Prus, D., Suparan, K. K., Pittayapong, P., Apaijai, N., et al. (2020). Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition, 69, 110576. 10.1016/j.nut.2019.110576.

Sakkas, H., Bozidis, P., Touzios, C., Kolios, D., Athanasiou, G., Athanasopoulou, E., et al. (2020). Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina, 56, 88. 10.3390/medicina56020088.

Sarkar, S. R., Mazumder P. M., & Banerjee, S. (2020). Probiotics protect against gut dysbiosis associated decline in learning and memory. Journal of Neuroimmunology, 348, 577390. https://doi.org/10.1016/j.jneuroim.2020.577390.

Schönfeld, P., & Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of Lipid Research, 57, 943-954. 10.1194/jlr.r067629.

Seaman, D. R. (2016). Toxins, toxicity, and endotoxemia: a historical and clinical perspective for chiropractors. Journal of Chiropractic Humanities, 23, 68-76. https://doi.org/10.1016/j.echu.2016.07.003.

Seong, H., Lee, S. K., Cheon, J. H., Yong, D. E., Koh, H., Kang, Y. K., et al. (2020). Fecal microbiota transplantation for multidrug-resistant organism: Efficacy and response prediction. Journal of Infection, 81, 719-725. https://doi.org/10.1016/j.jinf.2020.09.003.

Settanni, C. R., Ianiro, G., Bibbò, S., Cammarota, G., & Gasbarrini, A. (2021). Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 109, 110258. https://doi.org/10.1016/j.pnpbp.2021.110258.

Simpson, H. L., & Campbell, B. J. (2015). Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology & Therapeutics, 42, 158-179. 10.1111/apt.13248.

Singh, D., Khan, M. A., & Siddique, H. R. (2021). Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sciences, 285, 120008. https://doi.org/10.1016/j.lfs.2021.120008.

Singh, R. K., Chang, H-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., et al. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15, 73. 10.1186/s12967-017-1175-y.

Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212-215. 10.1038/nature16504.

Soppert, J., Lehrke, M., Marx, N., Jankowski, J., & Noels, H. (2020). Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Advanced Drug Delivery Reviews, 159, 4-33. https://doi.org/10.1016/j.addr.2020.07.019.

Stumpff, F. (2018). A look at the smelly side of physiology: transport of short chain fatty acids. Pflügers Archiv - European Journal of Physiology, 470, 571-598. 10.1007/s00424-017-2105-9.

Su, X., & Peng, D. (2020). Adipokines as novel biomarkers of cardio-metabolic disorders. Clinica Chimica Acta, 507, 31-38. https://doi.org/10.1016/j.cca.2020.04.009.

Sun, M-F., & Shen, Y-Q. (2018). Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Research Reviews, 45, 53-61. https://doi.org/10.1016/j.arr.2018.04.004.

Sun, S., Araki, Y., Hanzawa, F., Umeki, M., Kojima, T., Nishimura, N., et al. (2021). High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. The Journal of Nutritional Biochemistry, 93, 108621. https://doi.org/10.1016/j.jnutbio.2021.108621.

Vaziri, N. D. (2016). HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nature Reviews Nephrology, 12, 37-47. https://doi.org/10.1038/nrneph.2015.180.

Wang, J-W., Kuo, C-H., Kuo, F-C., Wang, Y-K., Hsu, W-H., Yu, F-J., et al. (2019). Fecal microbiota transplantation: Review and update. Journal of the Formosan Medical Association, 118, S23-S31. https://doi.org/10.1016/j.jfma.2018.08.011.

Wang, L., Zhao, D., Tang, L., Li, H., Liu, Z., Gao, J., et al. (2021). Soluble epoxide hydrolase deficiency attenuates lipotoxic cardiomyopathy via upregulation of AMPK-mTORC mediated autophagy. Journal of Molecular and Cellular Cardiology, 154, 80-91. https://doi.org/10.1016/j.yjmcc.2020.12.013.

White, J. D., Dewal, R. S., & Stanford, K. I. (2019). The beneficial effects of brown adipose tissue transplantation. Molecular Aspects of Medicine, 68, 74-81. https://doi.org/10.1016/j.mam.2019.06.004.

Woźniak, D., Cichy, W., Przysławski, J., & Drzymała-Czyż, S. (2021). The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Advances in Medical Sciences, 66, 284-292. 10.1016/j.advms.2021.05.003.

Wu, W., Kong, Q., Tian, P., Zhai, Q., Wang, G., Liu, X., et al. (2020). Targeting gut microbiota dysbiosis: potential intervention strategies for neurological disorders. Engineering, 6, 415-423. https://doi.org/10.1016/j.eng.2019.07.026.

Yu, Y., & Zhao, F. (2021). Microbiota-gut-brain axis in autism spectrum disorder. Journal of Genetics and Genomics, 48, 755-762. https://doi.org/10.1016/j.jgg.2021.07.001.

Yuzefpolskaya, M., Bohn, B., Nasiri, M., Zuver, A. M., Onat, D. D., Royzman, E. A., et al. (2020). Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. The Journal of Heart and Lung Transplantation, 39, 880-890. https://doi.org/10.1016/j.healun.2020.02.004.

Zhang, P., Konja, D., & Wang, Y. (2020). Adipose tissue secretory profile and cardiometabolic risk in obesity. Endocrine and Metabolic Science, 1, 100061. https://doi.org/10.1016/j.endmts.2020.100061.

Downloads

Publicado

31/03/2023

Como Citar

VINHA, L. I. de L. .; ALMEIDA, M. E. F. de .; BARAKAT , B.; SANTANA, B. F. de .; RIBEIRO, M. G. C. .; PARUSSOLO, G. S. . Disbiose intestinal em obesos: Uma revisão de literatura . Research, Society and Development, [S. l.], v. 12, n. 4, p. e9712440980, 2023. DOI: 10.33448/rsd-v12i4.40980. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40980. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão