Microesferas de hidroxiapatita nanoestruturada substituída por estrôncio para regeneração óssea
DOI:
https://doi.org/10.33448/rsd-v12i4.41222Palavras-chave:
Biomateriais; Regeneração Óssea; Defeito ósseo crítico; Hidroxiapatita; Estrôncio.Resumo
O objetivo deste estudo foi analisar o comportamento biológico e potencial osteogênico de microesferas de hidroxiapatita nanoestruturadas substituídas com estrôncio (nHASr). Para tanto, utilizou-se vinte ratos wistar, adultos, machos, distribuídos, aleatoriamente, em dois grupos: GnHASr – defeito ósseo crítico preenchido com microesferas de nHASr; e GC (grupo controle) – defeito ósseo crítico sem implantação de biomaterial; avaliados nos pontos biológicos de 30 e 60 dias. Os espécimes foram processados e corados por hematoxilina-eosina (HE) e tricrômico de Masson-Goldner (TG), e examinados por microscopia de luz comum. Posteriormente, foram analisados histomorfometricamente, para mensuração do percentual de matriz osteoide neoformada (%MO). Nos dois grupos estudados, em todos os pontos biológicos, observou-se deposição de matriz osteoide (MO) reparativa, próxima às bordas ósseas; resposta inflamatória crônica discreta; formação de tecido conjuntivo e neovascularização na área residual do defeito. No GnHASr, nos dois períodos avaliados, a deposição de MO foi notada, também, tanto de forma circunjacente quanto no interior das microesferas. Aos 60 dias, evidenciou-se no GnHASr uma área de 7,54% de deposição de MO em relação a área total do defeito, enquanto no GC este valor foi de 6,80%. Conclui-se que as microesferas de nHASr avaliadas neste estudo foram biocompatíveis, biodegradáveis, biorreabsorvíveis, bioativas e osteocondutoras. Nos dois grupos, a formação de tecido neomineralizado ocorreu de forma limitada, isto indica que a concentração de metal utilizada na substituição não favoreceu maior potencial osteogênico ao biomaterial. O biomaterial avaliado é adequado para ser utilizado como material de preenchimento.
Referências
Aina, V., Bergandi, L., Lusvardi, G., Malavasi, G., Imrie, F. E., Gibson, I. R., Cerrato, G. & Ghigod, D. (2013). Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Materials Science and Engineering: C, 33(3), 1132-1142.
Ammann, P., Shen, V., Robin, B., Mauras, Y., Bonjour, J. & Rizzoli, R. (2004). Strontium Ranelate Improves Bone Resistance by Increasing Bone Mass and Improving Architecture in Intact Female Rats. Journal of Bone and Mineral Research, 19(12), 2012-2020.
Anderson, J. M., Rodriguez, A. & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86-100.
Bonnelye, E., Chabadel, A., Saltel, F. & Jurdic, P. (2008). Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone, 42(1),129-138.
Bootchanont, A., Sailuam, W., Sutikulsombat, S., Temprom, L., Chanlek, N., Kidkhunthod, P., Suwanna, P. & Yimnirun, R. (2017). Synchrotron X-ray Absorption Spectroscopy study of local structure in strontium-doped hydroxyapatite. Ceramics International, 43(14), 11023-11027.
Borciani, G., Ciapetti, G., Vitale-Brovarone, C. & Baldini, N (2022). Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. Materials, 15, 1724.
Buchaim, D. V., Andreo, J. C., Pomini, K. T., Barraviera, B., Ferreira Júnior, R. S., Duarte, M. A. H., Alcalde, M. P., Reis, C. H. B., Teixeira, D. B., Bueno, C. R. S., Detregiachi, C. R. P., Araujo, A. C. & Buchaim, R. L. (2022). A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy. Journal of Venomous Animals and Toxins including Tropical Diseases, 28, e20210056.
Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shi, Z. & Tang, R. (2007). Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry, 17, 3780-3787.
Calasans-Maia, M., Calasans-Maia, J., Santos, S., Mavropoulos, E., Farina, M., Lima, I., Lopes, R. T., Rossi, A. & Granjeiro, J. M. (2014). Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure. Materials Science and Engineering: C, 41, 309-319.
Carmo, A. B. X., Sartoretto, S. C., Alves, A. T. N. N., Granjeiro, J. M., Miguel, F. B., Calasans-Maia, J. & Calasans-Maia, M. D. (2018). Alveolar bone repair with strontium-containing nanostructured carbonated hydroxyapatite. Journal of Applied Oral Science, 26, e20170084.
Combes, C., Cazalbou, S. & Rey, C. (2016). Apatite Biominerals. Minerals, 6(2), 1-25.
Conz, M. B., Granjeiro, J. M. & Soares, G. A. (2011). Hydroxyapatite crystallinity does not affect the repair of critical size bone defects. Journal of Applied Oral Science, 19(4), 337-42
Costa, N. M, Yassuda, D. H., Sader, M. S., Fernandes, G. V., Soares, G. D., & Granjeiro, J. M. (2016). Osteogenic effect of tricalcium phosphate substituted by magnesium associated with Genderm® membrane in rat calvarial defect model. Materials Science and Engineering C, 61(1), 63-71.
Cuozzo, R. C., Sartoretto, S. C., Resende, R. F. B., Alves, A. T. N. N., Mavropoulos, E., Prado da Silva, M. H. & Calasans-Maia, M. D. (2020). Biological evaluation of zinc-containing calcium alginate-hydroxyapatite composite microspheres for bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 1–11.
Ehret, C., Aid-Launais, R., Sagardoy, T., Siadous, R., Bareille, R., Rey, S., Pechev, S., Etienne, L., Kalisky, J., Mones, E., Letourneur, D., & Amedee Vilamitjana, J. (2017). Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLOS ONE, 12(9), 1-21.
Harrison, C. J., Hatton, P. V., Gentile, P. & Miller, C. A. (2021). Nanoscale Strontium-Substituted Hydroxyapatite Pastes and Gels for Bone Tissue Regeneration. Nanomaterials, 11(6), 1611.
Jiang, S., Wang, X., Ma, Y., Zhou, Y., Liu, L., Yu, F., Fang, B., Lin, K., Xia, L. & Cai, M. (2022). Synergistic Effect of Micro-Nano-Hybrid Surfaces and Sr Doping on the Osteogenic and Angiogenic Capacity of Hydroxyapatite Bioceramics Scaffolds. International Journal Nanomedicine, 17, 783–797.
Kammer, G. M., Sartoretto, S. C., Resende, R., Uzeda, M., Nascimento, J. R., Alves, A. T., Calasans-Maia, J., Rossi, A. M., Granjeiro, J. M. & Calasans-Maia, M. D. (2016). In vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite. Key Engineering Materials, 696, 212-222.
Kołodziejska, B., Stepien, N. & Kolmas, J (2021). The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. International Journal of Molecular Sciences, 22, 6564.
Lala, S., Brahmachari, S., Das, P. K., Das, D., Kar, T. & Pradhan, S. K. (2014). Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time. Materials Science and Engineering C, 42, 647–656.
Li, B., Liao, X., Zheng, L., He, H., Wang, H., Fan, H. & Zhang, X. (2012). Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. Materials Science and Engineering C, 32, 929-936.
Liu, S., Zhou, H., Liu, H., Ji, H., Fei, W. & Luo, E. (2019). Fluorine‐contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Proliferation, 52(3), e12613.
Liu, X., Huang, H., Zhang, J., Sun, T., Zhang, W. & Li, Z. (2023). Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering, 10, 414.
Luo, Y., Chen, S., Shi, Y. & Ma, J. (2018). 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. Biomedical Materials, 13(6), 065004.
Ma, P., Chen, T., Wu, X., Hu, Y., Huang, K., Wang, Y. & Dai, H. (2021). Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. Journal of Materials Chemistry B, 9, 6600-6613.
Machado, C. P. G., Pintor, A. V. B., Gress, M. A. K. A., Rossi, A. M., Granjeiro, J. M & Calasans Maia, M. D. (2010). Avaliação da hidroxiapatita contendo estrôncio como substituto ósseo em tíbias de ovelhas. Innovations Implant Journal: Biomaterials and Esthetics, 5(1), 9-14.
Machado, C. P. G., Sartoretto, S. C., Alves, A. T. N. N., Lima, I. B. C., Rossi, A. M., Granjeiro, J. M. & Calasans-Maia, M. D. (2016). Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep. Brazilian Oral Research, 30(1), e45 1-11.
Marx, D., Rahimnejad Yazdi, A., Papini, M. & Towler, M. (2020). A review of the latest insights into the mechanism of action of strontium in bone. Bone Reports, 12, 100273.
Miguel, F. B., Barbosa Júnior, A. A., de Paula, F. L., Barreto, I. C., Goissis, G. & Rosa, F. P. (2013). Regeneration of critical bone defects with anionic collagen matrix as scaffolds. Journal of Materials Science: Materials in Medicine, 24(11), 2567-2575.
Miguel, F.B., Cardoso, A. K. M. V., Barbosa Júnior, A. A., Marcantonio Júnior, E., Goissis, G. & Rosa, F. P. (2006). Morphological assessment of the behavior of three-dimensional anionic collagen matrices in bone regeneration in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78B(2), 334-339.
Mir, M., Leite, F. L., Herrmann Junior, P. S. P., Pissetti, F. L., Rossi, A. M., Moreira, E. L. & Mascarenhas, Y. P. (2012). XRD, AFM, IR and TGA Study of Nanostructured Hydroxyapatite. Materials Research, 15(4), 622-627.
Petrovic, M., Colovic, B., Jokanovic, V. & Markovic, D. (2012). Self assembly of biomimetic hydroxyapatite on the surface of different polymer thin films. Journal of Ceramic Processing Research, 13(4), 398-404.
Porto, G. G., Vasconcelos, B. C. E., Andrade, E. S. S., Carneiro, S. C. A. S. & Frota, M. S. M. (2012). Is a 5 mm rat calvarium defect really critical? Acta Cirurgica Brasileira, 27(11), 757-760.
Querido, W., Rossi, A. L. & Farina, M. (2016). The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron, 80, 122-134.
Ratnayake, J. T. B., Mucalo, M. & Dias, G. J. (2016). Substituted hydroxyapatites for bone regeneration: a review of current trends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105, 1285-99.
Ribeiro, I. I. A., Almeida, R. S., Rocha, D. N., Prado da Silva, M., Miguel, F. B. & Rosa, F. P. (2015) Biocerâmicas e polímero para a regeneração de defeitos ósseos críticos. Revista de Ciências Médicas e Biológicas, 13(3), 298-302.
Santos, G. G., Miguel, I. R. J. B., Barbosa Junior, A. A., Barbosa, W. T., Almeida, K. V., García-Carrodeguas, R., Fook, M. L., Rodríguez, M. A., Miguel, F. B., Araújo, R. P. C. & Rosa, F. P. (2021a). Bone regeneration using Wollastonite/β-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical Physics & Engineering Express, 7, 055015, 1-17.
Santos, G. G., Nunes, V. L. C., Marinho, S. M. O. C., Santos, S. R. A., Rossi, A. M. & Miguel, F. B. (2021b). Biological behavior of magnesium-substituted hydroxyapatite during bone repair. Brazilian Journal of Biology, 81(1), 53-61.
Santos, G. G., Vasconcelos, L. Q., Poy, S. C. S., Almeida, R. S., Barbosa Júnior, A. A., Santos, S. R. A., Rossi, A. M., Miguel, F. B. & Rosa, F. P. (2019). Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair. Acta Cirúrgica Brasileira, 34(2), e201900203
Schmitz, J. P. & Hollinger, J. O. (1986). The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research, (205), 299-308.
Scudeller, L. A., Mavropoulos, E., Tanaka, M. N., Costa, A. M., Braga, C. A. C., López, E. O., Mello, A. & Rossi, A. M. (2017). Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Materials Science and Engineering C, 79, 802-811.
Shepherd, J. H., Shepherd, D. V. & Best, S. M. (2012). Substituted hydroxyapatites for bone repair. Journal of Materials Science: Materials in Medicine, 23(10), 2335-2347.
Spicer, P., Kretlow, J., Young, S., Jansen, J. A., Kasper, F. K. & Mikos, A. G. (2012). Evaluation of bone regeneration using the rat critical size calvarial defect. Nature Protocols, 7(10), 1918-1929.
Su, X., Sun, K., Cui, F. Z. & Landis, W. J. (2003). Organization of apatite crystals in human woven bone. Bone, 32, 150-162.
Tite, T., Popa, A. C., Balescu, L. M., Bogdan, I. M., Pasuk, I., Ferreira, J. M. F. & Stan, G. E. (2018). Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials, 11(11), 2081.
Valenzuela, F., Covarrubias, C., Martínez, C., Smith, P., Díaz-Dosque, M. & Yazdani-Pedram, M. (2012). Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(6), 1672-1682.
Valiense, H., Barreto, M., Resende, R. F., Alves, A. T., Rossi, A. M., Mavropoulos, E., Granjeiro, J. M. & Calasans-Maia, M. D. (2015). In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits. Journal of biomedical materials research. Part B, Applied biomaterials, 104(2), 274-282.
Wang, P., Zhao, L., Liu, J., Weir, M. D., Zhou, X. & Xu, H. H. K. (2014). Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Research, 2, 14017.
Winkler, T., Sass, F. A., Duda, G. N. & Schmidt-Bleek, K. (2018). A review of biomaterials in bone defect healing, remaining short comings and future opportunities for bone tissue engineering. Bone and joint research, 7(3), 232-243.
Yatongchai, C., Placek, L. M., Towler, M. R. & Wren, A. W. (2015). Effects of Strontium Substitution on Bioactivity of Hydroxyapatite. 41st Annual Northeast Biomedical Engineering Conference (NEBEC), 1-2.
You, J., Zhang, Y. & Zhou, Y. (2022). Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Frontiers in Bioengineering and Biotechnology, 10, 1-22.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Iorrana Índira dos Anjos Ribeiro; Aryon de Almeida Barbosa Junior; Alexandre Malta Rossi; Renata dos Santos Almeida; Fúlvio Borges Miguel; Fabiana Paim Rosa
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.