Pós de rochas regionais como fonte de fósforo e potássio para plantas

Autores

DOI:

https://doi.org/10.33448/rsd-v9i7.4257

Palavras-chave:

Rochagem; Difratometria; Granulometria; Zea mays.

Resumo

Os pós de rochas contêm nutrientes que podem melhorar o desenvolvimento nutricional das plantas. Assim, objetivou-se avaliar a disponibilidade de fósforo (P) e potássio (K) através de pós de rochas coletados em diferentes locais e seus efeitos no desenvolvimento de plantas de milho. Utilizou-se três fontes de pós de rochas [coletados em Campo Alegre de Lourdes-BA (R1), Gilbués-PI (R2) e Cristalândia-PI (R3)], caracterizados por difratometria, granulometria, e pela dissolução de P e K em processo termodinamico. Após a caracterização físico-químico dos pós, realizou-se a aplicação de diferentes doses (2,0; 6,0; 8,0 e 10,0 t ha-1) no solo para analisar seus efeitos em plantas de milho. Na rocha R1 observou a presença de muscovita (mica) e apatita (fosfatos), em R2 a presença de muscovita (mica) e ortoclásio (feldspato) e em R3 a presença de muscovita (mica) e microclínio. Os materiais rochosos apresentaram dissolução de P e K em meio ácido em extrato aquoso. As rochas coletadas em Gilbués-PI, melhorou a disponibilidade de P e K, e favoreceu o desenvolvimento da parte aérea das plantas de milho.

Biografia do Autor

Thatiane Gomes Andrade, Universidade Federal do Piauí

Mestranda em Agronomia - Solos e Nutrição de Plantas, Bom Jesus, PI, Brasil

Sara Gomes da Rocha, Universidade Federal do Piauí

Bacharelado em Engenharia Agronômica , Bom Jesus , PI, Brasil

Alan de Sousa, Universidade Federal do Piauí

Bacharelado em Engenharia Agronômica , Bom Jesus , PI, Brasil

Paulo Vinicius da Silva Dai, Universidade Federal do Mato Grosso do Sul

Mestrando em Agronomia

Augusto Matias de Oliveira, Universidade Federal dos Vales do Jequitinhonha e Mucuri

Departamento de Produção Vegetal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brasil.

Referências

Aguilera, JG, Zuffo, AM, Ratke, RF, Trento, ACS, Lima, RE, Gris, GA, Morais, KAD, Silva, JX & Martins, WC. (2020). Influencia de dosis de polvo de basalto sobre cultivares de soya. Revista Research, Society and Development, 9(1), e51973974.

Bhering, LL. (2017). Rbio: A Tool For Biometric And Statistical Analysis Using The R Platform. Crop Breeding and Applied Biotechnology, 17(2), 187-190.

Bhering, L. L. (2017). Rbio: A tool for biometric and statistical analysis using the R platform Rbio: A tool for biometric and statistical analysis using the R platform SOFTWARE/DEVICE RELEASE. Crop Breeding and Applied Biotechnology - Crop Breeding and Applied Biotechnology, 17(17), 187–190.

Brasil. Ministério da Agricultura Pecuária e Abastecimento. (2017). Manual de métodos analíticos oficiais para fertilizantes e corretivos. Brasília: MAPA.

Camargo, C. K., De Resende, J. T. V., Camargo, L. K. P., Figueiredo, A. S. T., & Zanin, D. S. (2012). Produtividade do morangueiro em função da adubaçã o orgânica e com pó de basalto no plantio. Semina:Ciencias Agrarias, 33(SUPPL.1), 2985–2994.

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2015). Global Synthesis of Drought Effects on Food Legume Production. PloS One, 10(6), e0127401.

Dreyer, I., Gomez-Porras, J. L., & Riedelsberger, J. (2017). The potassium battery: a mobile energy source for transport processes in plant vascular tissues. In New Phytologist 216(4), 1049–1053.

Fuentes, L. F. G., de Souza, L. C. F., Serra, A. P., Rech, J., & Vitorino, A. C. T. (2018). Corn agronomic traits and recovery of nitrogen from fertilizer during crop season and off-season. Pesquisa Agropecuaria Brasileira, 53(10), 1158–1166.

Gonzalez Aguilera, J., Mario Zuffo, A., Felippe Ratke, R., Silva Trento, A. C., Lima, R. E., Alves Gris, G., Morais, K. A. D. de, Silva, J. X. da, & Martins, W. C. (2020). Influencia de dosis de polvo de basalto sobre cultivares de soya. Research, Society and Development, 9(7), 51973974.

Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soils. Berkeley: California Agricultural Experimental Station.

Jing, J., Christensen, J. T., Sørensen, P., Christensen, B. T., & Rubæk, G. H. (2019). Long‐term effects of animal manure and mineral fertilizers on phosphorus availability and silage maize growth. Soil Use and Management, 35(2), 323–333. doi: 10.1111/sum.12477

Klein, C., & Dutrow, B. (2012). Manual de ciência dos minerais. Porto Alegre: Bookman.

Li, C., Li, C., Zhang, H., Liao, H., & Wang, X. (2017). The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Physiologia Plantarum, 159(2), 215–227.

Lu, L., Qiu, W., Gao, W., Tyerman, S. D., Shou, H., & Wang, C. (2016). OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell and Environment, 39(10), 2247–2259.

Manning, D. A. C., & Theodoro, S. H. (2018). Enabling food security through use of local rocks and minerals. Extractive Industries and Society.

Menegale, M. L. de C., Castro, G. S. A., & Mancuso, M. A. C. (2015). Silício: interação com o sistema solo-planta. Journal of Agronomic Sciences, 4(especial), 435–454.

Melo, M. P. De, Caiam, R., Lima, P., Araújo, G., Freitas, D., & Oliveira, S. (2018). Fontes e doses de fósforo na produção de Panicum maximum cv . Massai Sources and doses of phosphorus in the production of Panicum maximum cv . Massai. Tecnologia & Ciência Agropecuária, 12(2), 25–35.

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UAB/NTE/UFSM.

Pragana, R. B., Ribeiro, M. R., Nóbrega, J. C. A., Filho, M. R. R., & da Costa, J. A. (2012). Qualidade física de Latossolos Amarelos sob plantio direto na região do Cerrado Piauiens. Revista Brasileira de Ciencia Do Solo, 36(5), 1591–1600.

Quaggio, J. . (2000). A acidez e calagem em solos tropicais. Campinas: Instituto Agronômico de Campinas.

Ramirez-Cabral, N. Y. Z., Kumar, L., & Shabani, F. (2017). Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Scientific Reports, 7(1), 1–13.

Ramos, C. G., Mello, A. G. De, & Kautzmann, R. M. (2014). Environmental Nanotechnology, Monitoring & Management A preliminary study of acid volcanic rocks for stonemeal application. Environmental Nanotechnology, Monitoring & Management, 1(2), 30–35.

Ratke, R. F., Pereira, H. S., Santos_Junior, J. D. G. dos, Barbosa, J. M., & Lopes, L. O. (2018). Different limestone particle sizes for soil acidity correction, Ca and Mg supply and corn yield. Comunicata Scientiae, 9(2), 175–184.

Ribeiro, S., & Ranulfo, A. (2010). Rochas silicáticas portadoras de potássio como fontes do nutriente para as plantas solo. Revista Brasileira de Ciência Do Solo, 34(1), 891–897.

Santos, D. R. dos, Gatiboni, L. C., & Kaminski, J. (2008). Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciência Rural, 38(2), 576–586.

Schaller, J., Faucherre, S., Joss, H., Obst, M., Goeckede, M., Planer-Friedrich, B., Peiffer, S., Gilfedder, B., & Elberling, B. (2019). Silicon increases the phosphorus availability of Arctic soils. Scientific Reports, 9(1), 1–11.

Silva, F. M. da, Alves, L. S., Botelho Filho, F. B., & Silva, I. S. (2017). Liquidez dos contratos futuros de milho negociados na BM&FBOVESPA. Revista de Administração e Negócios Da Amazônia, 9(1), 26.

Silva, F. S. (2011). Manual de análises de solos, plantas e fertilizantes. (2a). Brasília: Embrapa.

Srivastava, A. K., Mboh, C. M., Gaiser, T., Kuhn, A., Ermias, E., & Ewert, F. (2019). Effect of mineral fertilizer on rain water and radiation use efficiencies for maize yield and stover biomass productivity in Ethiopia. Agricultural Systems, 168, 88–100.

Straaten, P. V. A. N. (2006). Farming with rocks and minerals : challenges and opportunities. 78, 731–747.

Swaney, D. P., & Howarth, R. W. (2019). Phosphorus use efficiency and crop production: Patterns of regional variation in the United States, 1987–2012. Science of the Total Environment, 685, 174–188.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análises de solos (3a). Brasília: Embrapa.

Viadé, A., Fernández-marcos, M. L., Hernández-nistal, J., & Alvarez, E. (2011). Effect of particle size of limestone on Ca , Mg and K contents in soil and in sward plants. Scientia Agricola, 68(2), 200–208.

Wang, B., Liu, H., Wang, X. H., Li, J. M., Ma, Y. B., Ma, A. X. W., & Ma, X. W. (2015). Soil phosphorus accumulation model for an arid area of north-western China with 3-year rotation of wheat, maize and cotton. Journal of Agricultural Science, 153(7), 1247–1256.

Wang, Y., & Wu, W. H. (2017). Regulation of potassium transport and signaling in plants. In Current Opinion in Plant Biology, 39(1), pp. 123–128.

West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D. K., & Siebert, S. (2014). Leverage points for improving global food security and the environment. Science, 345(6194), 325–328.

Downloads

Publicado

23/05/2020

Como Citar

RATKE, R. F.; ANDRADE, T. G.; ROCHA, S. G. da; SOUSA, A. de; DAI, P. V. da S.; SILVA-FILHO, E. C.; BERTOLINO, L. C.; ZUFFO, A. M.; OLIVEIRA, A. M. de; AGUILERA, J. G. Pós de rochas regionais como fonte de fósforo e potássio para plantas. Research, Society and Development, [S. l.], v. 9, n. 7, p. e497974257, 2020. DOI: 10.33448/rsd-v9i7.4257. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4257. Acesso em: 15 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas