Desenvolvimento de VLPs (vírus like particle) como potencial vacina recombinante contra o vírus da dengue (DENV)

Autores

DOI:

https://doi.org/10.33448/rsd-v12i13.44384

Palavras-chave:

Dengue; VLPs; Doença; Arbovírus.

Resumo

A Dengue é uma doença grave, cuja erradicação ainda não foi alcançada em grande parte do mundo. A ausência de uma vacina eficaz e promissora para a prevenção da doença é um dos principais fatores que contribuem para essa situação. O desenvolvimento de Vírus Like Particles (VLPs) tem se mostrado uma estratégia promissora na busca por uma vacina eficaz contra a Dengue. Segundo a literatura, a dengue é caracterizada como um dos principais problemas de saúde pública mundial. Deste modo, é descrita como uma doença infecto contagiosa considerada a principal arbovirose que acomete humanos na atualidade. No entanto, nenhum tratamento específico ou vacina está disponível atualmente no mercado.  Sendo assim, a produção de uma vacina multivalente capaz de induzir uma resposta imunológica contra os quatro sorotipos do vírus (DENV) seria a melhor opção para a prevenção da doença. Considerando que as vacinas de partículas semelhantes a vírus (VLP) tem alcançado resultados positivos na prevenção de outras doenças contagiosas, é possível questionar se este tipo de vacina não teria uma boa eficácia se aplicada a prevenção da dengue. Diante deste cenário, podemos compreender e justificar a importância deste trabalho, uma vez que estudos sobre aplicação da VLP na prevenção da dengue podem auxiliar no desenvolvimento de novos métodos de controle desta doença.

Referências

Bachmann, M. F., & Jennings, G. T. (2010). Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 10(11), 787-796.

Bachmann, M. F., & Jennings, G. T. (2010). Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature reviews Immunology 10 (11), 787-796.

Bhatt, S. et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.Halstead S.B. (2007). Dengue. The Lancet, 370(9599), 1644–1652.

Chackerian, B. (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines. 6(3):381-90.

Chackerian, B. (2007). Virus-like particles: flexible platforms for vaccine development. Expert Review of Vaccines, 6(3), 381-390.

Chackerian, B. (2014). Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines, 6(3), 381-390.

Crill, W. D., Roehrig, J. T. (2001). Monoclonal Antibodies That Bind to Domain III of Dengue Virus E Glycoprotein Are the Most Efficient Blockers of Virus Adsorption to Vero Cells. Journal of Virology. 75(16):7769–7773.

Garg, H., Sedano, M., Plata, G., Punke, E. B., & Joshi, A. (2017). Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. Journal of virology 91(20).

Grgacic, E. V. L., & Anderson, D. A. (2006). Virus-like particles: Passport to immune recognition. Methods, 40(1), 60–65.

Grgacic, E. V., & Anderson, D. A. (2006). Virus-like particles: passport to immune recognition. Methods, 40(1), 60-65.

Halstead S.B., O'Rourke E.J. (1977). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. Journal of Experimental Medicine, 146(1), 201-217.

Halstead, S. B. (2003). Dengue: overview and history. In Dengue Virus (pp. 1-28). Springer, Vienna.

Halstead, S. B., Russell, P. K. (2017) Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 35(16), 1959-1966.

Halstead, S. B., & Cohen, S.N. (2015). Dengue Hemorrhagic Fever at 60 Years: Early Evolution of Concepts of Causation and Treatment. Microbiology Spectrum, 3(3), 1-23.

Kim, D., Hoory, T., Monie, A., Ting, J. P., 2017. The role of dendritic cells in the innate immune system. Microbes and Infection 2 (3), 257-272.

Kushnir, N., Streatfield, S. J., & Yusibov V. (2012). Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 31(1), 58-83.

Kushnir, N., Streatfield, S. J., Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31(1), 58-83.

Liljeström, P, & Garoff, H. (1991) Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J Virol. 1991;65(1):147-154.

Liu, W. J., Liu, X. S., Zhao, K. N. et al. (2010) Immunogenicity of dengue virus type 2-like particles expressed in insect cell line Sf9. Vaccine. 28(4):922–927.

Liu, M. A. (2010). Immunologic Basis of Vaccine Vectors. Immunity, 33(4), 504-515.

Liu, M. A., Ulmer, J. B., & Otten, G. R. (2016). Peptide-based vaccines and virus-like particles: combined strategies for the development of potent and safe adjuvants. Current opinion in molecular therapeutics, 18(1), 14-20.

Liu, Y., Liu, J., & Cheng, G. (2010) A track of evolving new biotechnology derived Dengue virus-like particle vaccine. Current Opinion in Virology 10: 14–20.

Liu, Y., Liu, J., & Cheng, G. (2016). Vaccines and immunization strategies for dengue prevention Emerging Microbes & Infections volume 5.

Lopez-Sagaseta, J., Malito, E., Rappuoli, R., & Bottomley, M. J. (2016). Self-assembling protein nanoparticles in the design of vaccines. Computational and Structural Biotechnology Journal, 14, 58-68.

Lorenz, I. C., Allison, S. L., Heinz, F. X., & Helenius, A. (2015). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. Journal of Virology, 79(7), 4462-4470.

Lorenzo, G., Lopez-Gil, E., Ortego, J., & Brun, A. (2015). Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination. Vaccine, 33(17),2080–2087.

Lua L. H. L., Connors N. K., Sainsbury F., Chuan Y. P., Wibowo N., & Middelberg A. P. J. (2014). Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering, 111(3), 425-440.

Mani, S. et al. (2013) Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. Journal of virological methods 189 (1), 93-98.

Mani, S., Tripathi, L., Raut, R., et al. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One. 2013;8(5): e64595.

Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman T., et al. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS ONE, 8(5), e64595.

Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., Sood, R., Galav, A., Deshmukh, R., Rao, P. V. L., Kameyama, T., Krol, E., Singh, H. R. S. B. K. P. J. P. M. (2010). Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. Journal of Virological Methods, 167(1), 10–16.

Mani, S., Tripathi, L., Raut, R., Tyag,i P., Arora, U., Barman T., Sood, R., Galav, A., Deshmukh R., Rao P. V. L., Kumar, J. S. (2016) Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Frontiers in Microbiology 7:1519.

Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., & Swaminathan S. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PloS one, 8(5), e64595.

Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., & Swaminathan, S. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One, 8(5), e64595.

Manoff, S. B., George, S. L., Bett, A. J., Yelmene, M. L., Dhanasekaran, G., Eggemeyer, L., & Casimiro, D. R. (2015). Preclinical and clinical development of a dengue recombinant subunit vaccine. Vaccine, 33(50), 7126-7134.

Metz SW, Thomas A, White L et al., Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J. 2018;15(1):60.

Metz, S. W., Martínez Murillo, P. A., & Pijlman, G. P. (2018). Chimeric dengue viruses with enhanced exposure of the E dimer epitope improve antibody-dependent enhancement in mice and virus neutralization in monkeys. Journal of Virology, 92(21), e00851-18.

Metz, S. W., Thomas A., White L., Stoops M., Corten M., Hannemann H. & Diamond M. S. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology Journal volume 15.

Metz, S. W., Thomas, A., White, L., Stoops, M., Corten, M., Hannemann, H., & de Silva A. M. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology journal 15(1), 60.

Metz, S. W., Thomas, A., White, L., Stoops, M., Corten, M., Hannemann, H.& de Silva, A. M. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology Journal,15(60),1-11.

Middelberg, A. P. J. (2015). Preparative protein refolding. Trends Biotechnol 20(10),437-443.

Noad R., & Roy P. (2003). Virus-like particles as immunogens. Trends in Microbiology, 11(9), 438-444.

Pushko, P., Pumpens, P., & Grens, E. (2013) Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology;56(3):141-65.

Sahdev, S., Khattar, S. K., & Saini, K. S. (2014). Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 385(1-2), 1-13.

Schultz-Cherry, S., Dybing, J. K., Davis, N. L., Williamson, C., Suarez, D. L., Johnston R., & Perdue M. L. (2000). Virus-like particles containing multiple antigenic proteins of avian influenza virus induce protection against lethal challenge in chickens Poultry Science 79:126-134.

Silva, L J., & Angerami, R. N. (2008) Arboviroses no Brasil contemporâneo. In: Viroses emergentes no Brasil [online]. Editora FIOCRUZ, 37-56. Temas em Saúde collection. https://doi.org/10.7476/9788575413814.0005.

Swaminathan G. & Khanna N. (2019). Recombinant Protein Vaccines for Dengue – How Close Are We? Expert Review of Vaccines. Vol 18(9)

Swaminathan, G., Thoryk, E. A., Cox, K. S., Smith, J. S., Wolf, J. J. & Barnett, S. W. (2014). A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Scientific Reports, 4, 4971.

Vicente T., Roldão A., Peixoto C., Carrondo M. J., & Alves P. M. (2011). Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology, 107, S42-S48.

Vicente T., Roldão A., Peixoto C., Carrondo M. J. T., Alves P. M. (2011). Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107: S42-S48.

Wahala W. M. P. B., Kraus A. A., Haymore L. B., Accavitti-Loper M. A., de Silva A. M. (2009). Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody Virology Journal volume 6.

World Health Organization (WHO). (2019). Dengue and severe dengue. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

World Health Organization. Dengue and severe dengue [Internet]. Geneva: World Health Organization; 2019 [cited 2020 Mar 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

Zhao H., Fernandez E., Dowd K. A., Speer S. D., Platt D. J., Gorman M. J. et al. (2016). Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 166(4), 1016-1027.

Downloads

Publicado

03/12/2023

Como Citar

REIMBERG, A. A. .; SANTOS, G. F. .; SILVA, E. G. V. da .; SIMÕES, E. .; ALMEIDA, B. R. de .; SANTOS, D. A. dos . Desenvolvimento de VLPs (vírus like particle) como potencial vacina recombinante contra o vírus da dengue (DENV). Research, Society and Development, [S. l.], v. 12, n. 13, p. e92121344384, 2023. DOI: 10.33448/rsd-v12i13.44384. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44384. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde