Avaliação do perfil das assincronias ventilatórias e demonstrativos de ocorrências em indivíduos neurocríticos na Unidade de Terapia Intensiva adulto em um Hospital referência
DOI:
https://doi.org/10.33448/rsd-v13i1.44638Palavras-chave:
Fisioterapia; Ventilação mecânica; Unidade de Terapia Intensiva.Resumo
Introdução: As assincronias ventilatórias são um desequilíbrio na coordenação entre o paciente e o ventilador mecânico durante a ventilação assistida e controlada. Essa falta de sincronia ocorre quando os esforços respiratórios do paciente não estão em harmonia com o funcionamento do ventilador ou quando os ajustes dos parâmetros estão equivocados. Objetivo: Traçar o perfil das assincronias ventilatórias com maior ocorrência em neurocríticos em uma unidade de terapia intensiva adulto. Método: Estudo piloto e observacional, mediante gerenciamento de coleta do programa TASY e resultados on time via software B.I. Analisados 47 casos adversos, havendo maior ocorrência nas assincronias de fluxo insuficiente e duplos disparos. Resultados: Ciclagem precoce e fluxo excessivo 1%, disparo ineficaz e ciclagem tardia aproximadamente 3%, disparo reverso 7%, auto disparo 8%, fluxo insuficiente 28% e duplos disparos 48%. Conclusão: Conclui-se que as alterações mecânicas com maior ocorrência, são as assincronias de fluxo insuficiente e duplos disparos, havendo necessidade futura prévia, propor medidas de controle e treinamento, como o aperfeiçoamento de monitorização ventilatória ativa, já que ambas possuem padrão de classificação relaciona a atividade participativa do paciente. Desta forma o gerenciamento de software de tecnologia inteligência foi eficaz para traçar o perfil das assincronias aqui avaliadas.
Referências
Almeida M. R., Horta J. G. Á., de Matos N. A., de Souza A. B. F., de Freitas C. T., da Silva C. L., et al. (2020). The effects of different ventilatory modes in female adult rats submitted to mechanical ventilation. Respiratory Physiology & Neurobiology, 284(1), 103583. https: //doi: 10.1016/j.resp.2020.103583.
Appendini, L., Patessio, A., Zanaboni, S., Carone, M., Gukov, B., Donner, C. F., & Rossi, A. (1994). Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 149(5), 1069–1076. https://doi.org/10.1164/ajrccm.149.5.8173743.
Baydur, A., Behrakis, P. K., Zin, W. A., Jaeger, M., & Milic-Emili, J. (1982). A simple method for assessing the validity of the esophageal balloon technique. The American review of respiratory disease, 126(5), 788–791. https://doi.org/10.1164/arrd.1982.126.5.788
Beitler, J. R., Sands, S. A., Loring, S. H., Owens, R. L., Malhotra, A., Spragg, R. G., Matthay, M. A., Thompson, B. T., & Talmor, D. (2016). Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive care medicine, 42(9), 1427–1436. https://doi.org/10.1007/s00134-016-4423-3
Blanch, L., Villagra, A., Sales, B., Montanya, J., Lucangelo, U., Luján, M., García-Esquirol, O., Chacón, E., Estruga, A., Oliva, J. C., Hernández-Abadia, A., Albaiceta, G. M., Fernández-Mondejar, E., Fernández, R., Lopez-Aguilar, J., Villar, J., Murias, G., & Kacmarek, R. M. (2015). Asynchronies during mechanical ventilation are associated with mortality. Intensive care medicine, 41(4), 633–641. https://doi.org/10.1007/s00134-015-3692-6
Branson R. D. (2011). Patient-ventilator interaction: the last 40 years. Respiratory care, 56(1), 15–24. https://doi.org/10.4187/respcare.00937
Chanques, G., Kress, J. P., Pohlman, A., Patel, S., Poston, J., Jaber, S., & Hall, J. B. (2013). Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Critical care medicine, 41(9), 2177–2187. https://doi.org/10.1097/CCM.0b013e31828c2d7a
Chao DC, Scheinhorn DJ (2016). Ventilatory Asynchrony. Clin Chest Med. 37(4):677-86. doi: 10.1016/j.ccm.2016.06.007.
Colombo, D., Cammarota, G., Bergamaschi, V., De Lucia, M., Corte, F. D., & Navalesi, P. (2008). Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive care medicine, 34(11), 2010–2018. https://doi.org/10.1007/s00134-008-1208-3
Costa, R., Spinazzola, G., Cipriani, F., Ferrone, G., Festa, O., Arcangeli, A., Antonelli, M., Proietti, R., & Conti, G. (2011). A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive care medicine, 37(9), 1494–1500. https://doi.org/10.1007/s00134-011-2297-y
de Wit, M., Miller, K. B., Green, D. A., Ostman, H. E., Gennings, C., & Epstein, S. K. (2009). Ineffective triggering predicts increased duration of mechanical ventilation. Critical care medicine, 37(10), 2740–2745. https://doi.org/10.1097/ccm.0b013e3181a98a05
Demoule, A., Clavel, M., Rolland-Debord, C., Perbet, S., Terzi, N., Kouatchet, A., Wallet, F., Roze, H., Vargas, F., Guerin, C., Dellamonica, J., Jaber, S., Brochard, L., & Similowski, T. (2016). Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial. Intensive care medicine, 42(11), 1723–1732. https://doi.org/10.1007/s00134-016-4447-8
Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Ferreira, J. C., Chipman, D. W., Hill, N. S., & Kacmarek, R. M. (2009). Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison. Chest, 136(2), 448–456. https://doi.org/10.1378/chest.08-3018
Gay, P. C., Rodarte, J. R., & Hubmayr, R. D. (1989). The effects of positive expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation. The American review of respiratory disease, 139(3), 621–626. https://doi.org/10.1164/ajrccm/139.3.621
Gong MN, Thompson BT. (2015). Patient-Ventilator Asynchrony in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 189(6):628-34. doi: 10.1164/rccm.201307-1349CI.
Gurevitch, M. J., & Gelmont, D. (1989). Importance of trigger sensitivity to ventilator response delay in advanced chronic obstructive pulmonary disease with respiratory failure. Critical care medicine, 17(4), 354–359. https://doi.org/10.1097/00003246-198904000-00011
Hubmayr RD. (1994). Setting the ventilator. In: Tobin MJ, ed. Principles and practice of mechanical ventilation. New York: McGraw-Hill. 191-206.
Luo, X. Y., He, X., Zhou, Y. M., Wang, Y. M., Chen, J. R., Chen, G. Q., Li, H. L., Yang, Y. L., Zhang, L., & Zhou, J. X. (2020). Patient-ventilator asynchrony in acute brain-injured patients: a prospective observational study. Annals of intensive care, 10(1), 144. https://doi.org/10.1186/s13613-020-00763-8
Lynch-Smith, D., Thompson, C. L., Pickering, R. G., & Wan, J. Y. (2016). Education on Patient-Ventilator Synchrony, Clinicians' Knowledge Level, and Duration of Mechanical Ventilation. American journal of critical care : an official publication, American Association of Critical-Care Nurses, 25(6), 545–551. https://doi.org/10.4037/ajcc2016623
MacIntyre, N. R., McConnell, R., Cheng, K. C., & Sane, A. (1997). Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Critical care medicine, 25(10), 1671–1677. https://doi.org/10.1097/00003246-199710000-00016
Mellott, K. G., Grap, M. J., Munro, C. L., Sessler, C. N., Wetzel, P. A., Nilsestuen, J. O., & Ketchum, J. M. (2014). Patient ventilator asynchrony in critically ill adults: frequency and types. Heart & lung : the journal of critical care, 43(3), 231–243. https://doi.org/10.1016/j.hrtlng.2014.02.002
Messinger, G., Banner, M. J., Blanch, P. B., & Layon, A. J. (1995). Using tracheal pressure to trigger the ventilator and control airway pressure during continuous positive airway pressure decreases work of breathing. Chest, 108(2), 509–514. https://doi.org/10.1378/chest.108.2.509
Musick, S., & Alberico, A. (2021). Neurologic Assessment of the Neurocritical Care Patient. Frontiers in neurology, 12, 588989. https://doi.org/10.3389/fneur.2021.588989
Nava, S., Bruschi, C., Fracchia, C., Braschi, A., & Rubini, F. (1997). Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. The European respiratory journal, 10(1), 177–183. https://doi.org/10.1183/09031936.97.10010177
Nava, S., Bruschi, C., Rubini, F., Palo, A., Iotti, G., & Braschi, A. (1995). Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive care medicine, 21(11), 871–879. https://doi.org/10.1007/BF01712327
Nguyen, Q. T., Pastor, D., Lellouche, F., & L'her, E. (2013). Mechanical ventilation system monitoring: automatic detection of dynamic hyperinflation and asynchrony. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2013, 5207–5210. https://doi.org/10.1109/EMBC.2013.6610722
Ninane, V., Rypens, F., Yernault, J. C., & De Troyer, A. (1992). Abdominal muscle use during breathing in patients with chronic airflow obstruction. The American review of respiratory disease, 146(1), 16–21. https://doi.org/10.1164/ajrccm/146.1.16
Oliveira, L. P., Ferreira, M. J. S.; Pantoja, A. J. C.; Costa, K. T. A. (2021). Tracheostomized patients profile in an adult Intensive Care Unit . Research, Society and Development, 10 (15), e280101522996. https://: 10.33448/rsd-v10i15.22996.
Patel, H., & Yang, K. L. (1995). Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Critical care medicine, 23(6), 1074–1079. https://doi.org/10.1097/00003246-199506000-00013
Petrof, B. J., Legaré, M., Goldberg, P., Milic-Emili, J., & Gottfried, S. B. (1990). Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. The American review of respiratory disease, 141(2), 281–289. https://doi.org/10.1164/ajrccm/141.2.281
Pohlman, M. C., McCallister, K. E., Schweickert, W. D., Pohlman, A. S., Nigos, C. P., Krishnan, J. A., Charbeneau, J. T., Gehlbach, B. K., Kress, J. P., & Hall, J. B. (2008). Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Critical care medicine, 36(11), 3019–3023. https://doi.org/10.1097/CCM.0b013e31818b308b
Ramirez, I. I., Arellano, D. H., Adasme, R. S., Landeros, J. M., Salinas, F. A., Vargas, A. G., Vasquez, F. J., Lobos, I. A., Oyarzun, M. L., & Restrepo, R. D. (2017). Ability of ICU Health-Care Professionals to Identify Patient-Ventilator Asynchrony Using Waveform Analysis. Respiratory care, 62(2), 144–149. https://doi.org/10.4187/respcare.04750
Rittayamai, N., Wilcox, E., Drouot, X., Mehta, S., Goffi, A., & Brochard, L. (2016). Positive and negative effects of mechanical ventilation on sleep in the ICU: a review with clinical recommendations. Intensive care medicine, 42(4), 531–541. https://doi.org/10.1007/s00134-015-4179-1
Robba C., Bonatti G., Battaglini D., Rocco P. R. M. & Pelosi P. (2019). Mechanical ventilation in patients with acute ischaemic stroke: from pathophysiology to clinical practice. Critical Care, 23, 388. https://doi.org/10.1186/s13054-019-2662-8.
Roche-Campo, F., Thille, A. W., Drouot, X., Galia, F., Margarit, L., Córdoba-Izquierdo, A., Mancebo, J., d'Ortho, M. P., & Brochard, L. (2013). Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically III tracheostomized patients. Critical care medicine, 41(7), 1637–1644. https://doi.org/10.1097/CCM.0b013e318287f569
Schmidt, M., Demoule, A., Polito, A., Porchet, R., Aboab, J., Siami, S., Morelot-Panzini, C., Similowski, T., & Sharshar, T. (2011). Dyspnea in mechanically ventilated critically ill patients. Critical care medicine, 39(9), 2059–2065. https://doi.org/10.1097/CCM.0b013e31821e8779f
Sieck, G. C., Ferreira, L. F., Reid, M. B., & Mantilla, C. B. (2013). Mechanical properties of respiratory muscles. Comprehensive Physiology, 3(4), 1553–1567. https://doi.org/10.1002/cphy.c130003
Sinderby, C., Liu, S., Colombo, D., Camarotta, G., Slutsky, A. S., Navalesi, P., & Beck, J. (2013). An automated and standardized neural index to quantify patient-ventilator interaction. Critical care (London, England), 17(5), R239. https://doi.org/10.1186/cc13063
Spahija, J., de Marchie, M., Albert, M., Bellemare, P., Delisle, S., Beck, J., & Sinderby, C. (2010). Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Critical care medicine, 38(2), 518–526. https://doi.org/10.1097/CCM.0b013e3181cb0d7b
Tallo, F. S., de Campos Vieira Abib, S., de Andrade Negri, A. J., Cesar, P., Filho, Lopes, R. D., & Lopes, A. C. (2017). Evaluation of self-perception of mechanical ventilation knowledge among Brazilian final-year medical students, residents and emergency physicians. Clinics (Sao Paulo, Brazil), 72(2), 65–70. https://doi.org/10.6061/clinics/2017(02)01
Terzi, N., Piquilloud, L., Rozé, H., Mercat, A., Lofaso, F., Delisle, S., Jolliet, P., Sottiaux, T., Tassaux, D., Roesler, J., Demoule, A., Jaber, S., Mancebo, J., Brochard, L., & Richard, J. C. (2012). Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference. Critical care (London, England), 16(3), 225. https://doi.org/10.1186/cc11297
Thille, A. W., Rodriguez, P., Cabello, B., Lellouche, F., & Brochard, L. (2006). Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive care medicine, 32(10), 1515–1522. https://doi.org/10.1007/s00134-006-0301-8
Varon J, Fromm R, Rodarte J, et al. (1994) Prevalence of patient ventilator asynchrony in critically ill patients [abstract]. Chest. 106:141S
Vasconcelos, R.dosS., Melo, L. H., Sales, R. P., Marinho, L. S., Deulefeu, F. C., Reis, R. C., Alves-de-Almeida, M., & Holanda, M. A. (2013). Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation. Respiration; international review of thoracic diseases, 86(6), 497–503. https://doi.org/10.1159/000353256
Warnke C, Heine A, Müller-Heinrich A, Knaak C, Friesecke S, Obst A, et al. (2020). Predictors of survival after prolonged weaning from mechanical ventilation. Journal of Critical Care, 60: 212-217. https:// doi: 10.1016/j.jcrc.2020.08.010.
Wunsch, H., Linde-Zwirble, W. T., Angus, D. C., Hartman, M. E., Milbrandt, E. B., & Kahn, J. M. (2010). The epidemiology of mechanical ventilation use in the United States. Critical care medicine, 38(10), 1947–1953. https://doi.org/10.1097/CCM.0b013e3181ef4460
Yonis, H., Crognier, L., Conil, J. M., Serres, I., Rouget, A., Virtos, M., Cougot, P., Minville, V., Fourcade, O., & Georges, B. (2015). Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC anesthesiology, 15, 117. https://doi.org/10.1186/s12871-015-0091-z
Younes M. (1993). Patient -ventilator interaction with pressureassisted modalities of ventilatory support. Semin Respir Med. 14:299-322.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Walter de Aquino Vieira Filho; Marden Junio Sousa Ferreira; Jhonhy Sheldom Nunes; Nayan Leonardo Sousa Lopes; Flávia Lobato Maciel ; Marcos Vinícius da Conceição; Tais Kaybers
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.