Aspectos bioquímicos e imunológicos da aterosclerose e seus fatores dietéticos contribuintes - Uma revisão narrativa

Autores

DOI:

https://doi.org/10.33448/rsd-v13i7.46239

Palavras-chave:

Lipoproteínas; Disfunção endotelial; Placa de ateroma; Alimentação.

Resumo

A aterosclerose é uma disfunção que afeta o endotélio que reveste a artéria, tornando mais susceptível a deposição de LDL na íntima, sua camada mais interna. A LDL oxidada estimula as células endoteliais a secretarem moléculas que promovem a migração de monócitos da corrente sanguínea para a região lesionada. No tecido, os monócitos se diferenciam em macrófagos que fagocitam as partículas de LDL oxidadas e formam as células espumosas que desencadeiam a placa de ateroma que causa o enrijecimento dos vasos e dificulta a passagem do sangue, e seu rompimento gera complicações cardiovasculares como o infarto e o acidente vascular cerebral. Os hábitos alimentares exercem um papel determinante nessa patologia, onde os alimentos fontes de gorduras saturadas e trans podem favorecer o desenvolvimento da aterosclerose por aumentarem as concentrações séricas de LDL. Em contrapartida, uma dieta com alimentos fontes de fibras mais e menos solúveis, ácidos graxos insaturados, compostos bioativos e micronutrientes antioxidantes previne o desenvolvimento da aterosclerose, pois contribui para a redução dos teores séricos da LDL e a neutralização das espécies reativas derivados do oxigênio e do nitrogênio. O objetivo deste trabalho foi realizar uma revisão narrativa sobre os aspectos bioquímicos e imunológicos da aterosclerose, e os fatores dietéticos contribuintes para sua prevenção e/ou tratamento. Por ser uma doença que ocasiona sérias complicações ao sistema cardiovascular, como infarto e acidente vascular cerebral, torna-se importante a aplicação de medidas profiláticas para prevenir tal comorbidade.

Referências

Agrawal, S., Zaritsky, J. J., Fornoni, A., & Smoyer, W. E. (2018). Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat. Rev. Nephrol., 14:54-70. https://doi.org/10.1038/nrneph.2017.155.

Alabi, A., Xia, X-D., Gu, H-M., Wang, F., Deng, S-J., & Yang, N. et al. (2021). Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat. Commun., 12:1889. https://doi.org/10.1038/s41467-021-22167-3.

Alharbi, M. O., Dutta, B., Goswami, R., Sharma, S., Lei, K. Y., & Rahaman, S. O. (2021). Identification and functional analysis of a biflavone as a novel inhibitor of transient receptor potential vanilloid 4-dependent atherogenic processes. Sci. Rep., 11:8173. https://doi.org/10.1038/s41598-021-87696-9.

Amir, S., & Binder, C. J. (2010). Experimental immunotherapeutic approaches for atherosclerosis. Clinic. Immunol., 134:66-79. doi: 10.1016/j.clim.2009.07.009.

Ardestani, S. B., Eftedal, J., Pedersen, M., Jeppersen, P. B., Norregaard, R., & Matchkov, V. V. (2020). Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci. Rep., 10:15296. https://doi.org/10.1038/s41598-020-72338-3.

Aronis, K. N., Khan, S. M., & Mantzoros, C. S. (2012). Effects of trans fatty acids on glucose homeostasis: a meta-analysis of randomized, placebo-controlled clinical trials. Am. J. Clin. Nutr., 96:1093-1099. https://doi.org/10.3945/ajcn.112.040576.

Bachetti, T., Turco, I., Urbano, A., Morres, C., & Ferreti, G. (2019). Relationship of fruit and vegetable intake to dietary antioxidant capacity and markers of oxidative stress: A sex-related study. Nutrition, 61:164-172. https://doi.org/10.1016/j.nut.2018.10.034.

Ballout, R. A., & Remaley, A. T. (2021). Pediatric dyslipidemias: Lipoprotein metabolism disorders in children. In book: Biochemical and molecular basis of pediatric disease. Edition: 5th Edition. Chapter: 28, 965-1022. https://doi.org/10.1016/B978-0-12-817962-8.00002-0.

Barba-Orellana, S., Barba, F. J., Quilez, F., Cuesta, L., Denoya, G. I., & Vieira, P. et al. (2020). Nutrition, public health, and sustainability: an overview of current challenges and future perspectives. In book: Agri-food industry strategies for healthy diets and sustainability. Chapter 1, 3-50. https://doi.org/10.1016/B978-0-12-817226-1.00001-1.

Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 16:727-744. https://doi.org/10.1038/s41569-019-0227-9.

Battino, M., Giampieri, F., Cianciosi, D., Ansary, J., Chen, X., & Zhang, D. et al. (2021). The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. Phytomedicine, 86:153170. https://doi.org/10.1016/j.phymed.2020.153170.

Behl, T., Bungau, S., Kumar, K., Zengin, G., Khan F., & Kumar, A. et al. (2020). Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother., 130:110714. https://doi.org/10.1016/j.biopha.2020.110714.

Beilstein, F., Carrière, V., Leturque, A., & Demignot, S. (2016). Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp. Cell. Res., 340:172-179. https://doi.org/10.1016/j.yexcr.2015.09.018.

Beyer, P. L. (2012). Ingestão, digestão, absorção, transporte e excreção de nutrientes. In: Mahan, L., & Escott-Stump, S. Krause: alimentos, nutrição e dietoterapia, São Paulo: Elsevier, Capítulo 1, 40-71.

Biziulevičius, G. A., & Kazlauskaitè, J. (2007). Following Hippocrates’ advice ‘Let food be thy medicine and medicine be thy food’: An alternative method for evaluation of the immunostimulatory potential of food proteins. Med. Hypotheses, 68:712-713. https://doi.org/10.1016/j.mehy.2006.09.001.

Blankenberg, S., Barbaux, S., & Tiret, L. (2003). Adhesion molecules and atherosclerosis. Atherosclerosis, 170:191-203. https://doi.org/0.1016/s0021-9150(03)00097-2.

Brüssow, H., & Parkinson, S. J. (2014). You are what you eat. Nat. Biotechnol., 32:243-245. https://doi.org/10.1038/nbt.2845.

Busatto, S., Walker, S. A., Grayson, W., Pham, A., Tian, M., & Nesto, N. et al. (2020). Lipoprotein-based drug delivery. Adv. Drug. Deliv. Rev., 159:377-390. https://doi.org/10.1016/j.addr.2020.08.003.

Castaño, D., Rattanasopa, C., Monteiro-Cardoso, V. F., Corlianò, M., Liu, Y., & Zhong, S. et al. (2020). Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv. Drug. Deliv. Rev., 159:54-93. https://doi.org/10.1016/j.addr.2020.04.013.

Chen, P., Bornhorst, J., & Aschner, M. (2018). Manganese metabolism in humans. Front. Biosci., 23:1655-1679. https://doi.org/10.2741/4665.

Chinetti-Gbaguidi, G., Colin, S., & Staels, B. (2015). Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol., 12:10-17. https://doi.org/10.1038/nrcardio.2014.173.

Cortes, V. A., Busso, D., Maiz, A., Arteaga, A., Nervi, F., & Rigotti, A. (2014). Physiological and pathological implications of cholesterol. Front. Biosci., 19:416-428. https://doi.org/10.2741/4216.

Costa, M. R., Garcia, J. L., Silva, C. C. V. A., Ferraz, A. P. C. R., Francisqueti-Ferron, V. F., & Ferron, A. J. T. et al. (2020). Pathological bases of oxidative stress in the development of cardiovascular diseases. In book: Pathology and oxidative stress and dietary antioxidante. Chapter 4, 39-48. https://doi.org/10.1016/B978-0-12-815972-9.00004-4.

DeBose-Boyd, R. A. (2008). Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res., 18:609-621. https://doi.org/10.1038/cr.2008.61.

Demigné, C., Morand, C., Levrat, M-A., Besson, C., Moundras, C., & Rémésy, C. (1995). Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr., 74:209-219. https://doi.org/10.1079/BJN19950124.

Demignot, S., Beilstein, F., & Morel, E. (2014). Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: Key players in intestinal physiology and metabolic disorders. Biochimie, 96:48-55. https://doi.org/10.1016/j.biochi.2013.07.009.

Demos, C., Tamargo, I., & Jo, H. (2021). Biomechanical regulation of endothelial function in atherosclerosis. In book: Biomechanics of coronary atherosclerotic plaque. Chapter 1, 3-47. https://doi.org/10.1016/B978-0-12-817195-0.00001-9.

Dominguez, L. J., & Barbagallo, M. (2020). Dietary fiber intake and the Mediterranean population. In book: The Mediterranean diet. Second Edition. Chapter 23, 257-265. https://doi.org/10.1016/B978-0-12-818649-7.00023-0.

Ems, T., Lucia, K. S., & Huecker, M. R. (2022). Biochemistry, iron absorption. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Feaver, R. E., Hastings, N. E., Pryor, A., & Blackman, B. R. (2008). GRP78 upregulation by atheroprone shear stress via p38-, alpha2beta1-dependent mechanism in endothelial cells. Arterioscler. Thromb. Vasc. Biol., 28:1534-1541. https://doi.org/10.1161/ATVBAHA.108.167999.

Gallagher, M. L. (2012). Ingestão: os nutrientes e seu metabolismo. In: Mahan, L., & Escott-Stump, S. Krause: Alimentos, nutrição e dietoterapia. Elsevier, 3:99-294.

García, T. J., & Agüero, S. D. (2014). Fosfolípidos: propriedades y efectos sobre la salud. Nutri. Hosp., 31:76-83. https://dx.doi.org/10.3305/nh.2015.31.1.7961.

Genest, J., & Libby, P. (2018). Distúrbios das lipoproteínas e doença cardiovascular. In: Mann, D. L., Zipes, D. P., Libby, P., & Bonow, R. O. Braunwald: Tratado de doenças cardiovasculares. São Paulo: Elsevier, Capítulo 45, 2556-2612.

Godala, M. M., Materek-Kusmierkiewics, I., Moczulski, D., Rutkowski, M., Szatko, F., & Gaszyńska, E. et al. (2016). Lower plasma levels of antioxidant vitamins in patients with metabolic syndrome: A case control study. Adv. Clin. Exp. Med. JCR, 25:689-700. https://doi.org/10.17219/acem/41049.

Groner, J., Goepferich, A., & Breunig, M. (2021). Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J. Control. Release, 333:536-559. https://doi.org/10.1016/j.jconrel.2021.03.034.

Gu, Y., & Yin, J. (2020). Saturated fatty acids promote cholesterol biosynthesis: Effects and mechanisms. Obes. Med., 18:100201. https://doi.org/10.1016/j.obmed.2020.100201.

Haarhaus, M., Brandenburg, V., Kalantar-Zadeh, K., Stenvinkel, P., & Magnusson, P. (2017). Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol., 13:429-442. https://doi.org/10.1038/nrneph.2017.60.

Han, Y-H., Onufer, E. J., Huang, L-H., Sprung, R. W., & Davidson, W. S. et al. (2021). Enterically derived high-density lipoprotein restrains liver injury via the portal vein. Science, 373:eabe6729. doi: 10.1126/science.abe6729.

Heeren, J., & Scheja, L. (2021). Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab., 50:1011238. doi: 10.1016/j.molmet.2021.101238.

Hegele, R. A. (2009). Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet., 10:109-121. https://doi.org/10.1038/nrg2481.

Hegele, R. A. (2021). Lipoprotein and lipid metabolism. In book: Emery and rimoin’s principles and practice of medical genetics and genomics. Seven Edition. Chapter 7, 235-278. https://doi.org/10.1016/B978-0-12-812535-9.00007-8.

Innes, J. K., & Calder, P. C. (2018). Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids, 132:41-48. https://doi.org/10.1016/j.plefa.2018.03.004.

Insull Jr, W. (2009). The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med., 122:S3-S14. https://doi.org/10.1016/j.amjmed.2008.10.013.

Islam, A., Amin, M. N., Siddiqui, S. A., Hossain, P., Sultana, F., & Kabir, R. (2019). Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes Metab. Syndr., 13:1643-1647. https://doi.org/10.1016/j.dsx.2019.03.033.

Itabe, H., Obama, T., & Kato, R. (2011). The dynamics of oxidized LDL during atherogenesis. J. Lipids, 2011:418313. https://doi.org/10.1155/2011/418313.

Ketelhuth, D. F. J., & Hansson, G. K. (2016). Adaptive response of T and B cells in atherosclerosis. Circ. Res., 118:668-678. http://doi.org/10.1161/CIRCRESAHA.115.306427.

Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., & Walode, S. G. et al. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26:4021. https://doi.org/10.3390/molecules26134021.

Khosla, P., & Hayes, K. C. (1996). Dietary trans-monounsaturated fatty acids negatively impact plasma lipids in humans: Critical review of the evidence. J. Am. Coll. Nutr., 15:325-339. doi: 10.1080/07315724.1996.10718607.

Kiani, R. (2022). Dyslipidemia. In book: Practical cardiology. Second Edition. Chapter 21, 387-393. https://doi.org/10.1016/B978-0-323-80915-3.00031-4.

Kim, K-W., Ivanov, S., & Williams, J. W. (2021). Monocyte recruitment, specification, and function in atherosclerosis. Cells, 10:15. https://doi.org/10.3390/cells10010015.

Kovačević, D. B., Brdar, D., Fabečić, P., Barba, F. J., Lorenzo, J. M., & Putinik, P. (2020). Strategies to achieve a healthy and balanced diet: fruits and vegetables as a natural source of bioactive compounds. In book: Agri-food industry strategies for healthy diets and sustainability. Chapter 2, 51-88. https://doi.org/10.1016/B978-0-12-817226-1.00002-3.

Kresanov, P., Mykkänen, J., Ahotupa, M., Ala-Korpela, M., Juolana, M., & Kaikkonen, J. et al. (2021). The associations of oxidized lipoprotein lipids with lipoprotein subclass particle concentrations and their lipid compositions. The Cardiovascular Risk in Young Finns Study. Free Radic. Biol. Med., 162:225-232. https://doi.org/10.1016/j.freeradbiomed.2020.10.020.

Kruger, M. J., Davies, N., Myburgh, K. H., & Lecour, S. (2014). Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int., 59:41-52. https://doi.org/10.1016/j.foodres.2014.01.046.

Kumari, A., Kristensen, K. K., Ploug, M., & Whinter, A-M. L. (2021). The importance of lipoprotein lipase regulation in atherosclerosis. Biomed., 9:782. https://doi.org/10.3390/biomedicines9070782.

Lammers, T., & Noels, H. (2020). Lipids in disease pathology, diagnosis & therapy. Adv. Drug. Deliv. Rev., 159:1-3. https://doi.org/10.1016/j.addr.2020.11.006.

Li, J., & Pfeffer, S. R. (2016). Lysossomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. eLife, 5:e21635. https://doi.org/10.7554/eLife.21635.002.

Libby, P. (2012). Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 32:2045-2051. https://doi.org/10.1161/ATVBAHA.108.179705.

Libby, P. (2018). Biologia vascular da aterosclerose. In: Mann, D. L., Zipes, D. P., Libby, P., & Bonow, R. O. Braunwald: Tratado de doenças cardiovasculares. São Paulo: Elsevier, Capítulo 41, 2269-2308.

Libby, P. (2021). The changing landscape of atherosclerosis. Nat., 592:524-533. https://doi.org/10.1038/s41586-021-03392-8.

Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., & Bittencourt, M. S. et al. (2019). Atherosclerosis. Nat. Rev. Dis. Primers, 5:56. https://doi.org/10.1038/s41572-019-0106-z.

Lichtenstein, A. H. (2014). Dietary trans fatty acids and cardiovascular disease risk: past and present. Curr. Atheroscler. Rep., 16:433. https://doi.org/10.1007/s11883-014-0433-1.

Liu, L., Zeng, P., Yang, X., Duan, Y., Zang, W., & Ma, C. et al. (2018). Inhibition of vascular calcification: A new antiatherogenic mechanism of topo II (DNA Topoisomerase II) inhibitors. Arterioscler. Thromb. Vasc. Biol., 38:2382-2395. https://doi.org/10.1161/ATVBAHA.118.311546.

López-Miranda, J., Pérez-Martinez, P., & Pérez-Jiménez, F. (2006). Health benefits of monounsaturated fatty acids. In book: Improving the fat content of foods. Woodhead Publishing Series in Food Science, Technology and Nutrition. Chapter 4, 71-106. https://doi.org/10.1533/9781845691073.1.71.

Luo, J., Yang, H., & Song, B-L. (2020). Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell. Biol., 21:225-245. https://doi.org/10.1038/s41580-019-0190-7.

Luz, P. L., Chagas, A. C. P., Dourado, P. M. M., & Laurindo, F. R. M. (2018). Endothelium in atherosclerosis: plaque formation and its complications. In book: Endothelium and cardiovascular diseases. Vascular biology and clinical syndromes. Chapter 33, 493-512. https://doi.org/10.1016/B978-0-12-812348-5.00033-7.

Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., & Badimon, L. et al. (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart. J., 41:111-188. https://doi.org/10.1093/eurheartj/ehz455.

Maguire, E. M., Pearce, S. W. A., & Xiao, Q. (2019). Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol., 112:54-71. https://doi.org/10.1016/j.vph.2018.08.002.

Manieri, T. M., Sensi, S. L., Squitti, R., & Cerchiaro, G. (2021). Structural effects of stabilization and complexation of a zinc-deficient superoxide dismutase. Helyon, 7:e06100. https://doi.org/10.1016/j.heliyon.2021.e06100.

Marques, D. O., & Quintilio, M. S. V. (2021). Farmacologia e riscos das drogas para emagrecer. Revista Coleta Científica, 5:38-49. https://doi.org/10.5281/zenodo.5093482.

McQuilken, S. A. (2021). Digestion and absorption. Anaesth. Intensiv. Care Med, 22:336-338. https://doi.org/10.1016/j.mpaic.2020.12.009.

Mead, J. R., Irvine, S. A., & Ramji, D. P. (2002). Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med., 80:753-769. https://doi.org/10.1007/s00109-002-0384-9.

Mehta, A., & Shapiro, M. D. (2022). Apolipoproteins in vascular biology and atherosclerotic disease. Nat. Rev. Cardiol., 19:168-179. https://doi.org/10.1038/s41569-021-00613-5.

Mestas, J., & Ley, K. (2008). Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc. Med., 18:228-232. https://doi.org/10.1016/j.tcm.2008.11.004.

Moerman, A. M., Visscher, M., Slijkhuis, N., Gaalen, K. V., Heijs, B., & Klein, T. et al. (2021). Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J. Lipid Res., 62:100020. https://doi.org/10.1194/jlr.RA120000974.

Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145:341-345. https://doi.org/10.1016/j.cell.2011.04.005.

Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 13:709-721. https://doi.org/10.1038/nri3520.

Nawaz, M. S., Shoaib, B., & Asharaf, M. A. (2021). Intelligent cardiovascular disease prediction empowered with gradient descent optimization. Helyon, 7:e06948. https://doi.org/10.1016/j.heliyon.2021.e06948.

Nelson, D. L., & Cox, M. M. (2014). Princípios de bioquímica de Lehninger. Porto Alegre: Artmed.

Nie, Y., & Luo, F. (2021). Dietary fiber: An opportunity for a global control of hyperlipidemia. Oxid. Med. Cell. Longev., 2021:5542342. doi: 10.1155/2021/5542342.

Noels, H., Lehrke, M., Vanholder, R., & Jankowski, J. (2021). Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat. Rev. Nephrol., 17:528-542. https://doi.org/10.1038/s41581-021-00423-5.

O’Connor, R. A., Cahill, P. A., & McGuinness, G. B. (2020). Cardiovascular tissue engineering. In book: Biomaterials for organ and tissue regeneration. New technologies and future prospects. Woodhead Publishing Series in Biomaterials. Chapter 10, 249-272. https://doi.org/10.1016/B978-0-08-102906-0.00011-8.

Oliveira, F. L. C., Patin, R. V., & Escrivão, M. A. M. S. (2010). Atherosclerosis prevention and treatment in children and adolescents. Expert. Rev. Cardiovasc. Ther., 8:513-528. https://doi.org/10.1586/erc.09.170.

Oram, J. F., & Vaughan, A. M. (2006). ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res., 99:1031-1043. https://doi.org/10.1161/01.RES.0000250171.54048.5c.

Paul, O., Tao, J. Q., Guo, X., & Chatterjee, S. (2021). The vascular system: Components, signaling, and regulation. In book: Endothelial signaling in vascular dysfunction and disease. Chapter 1, 3-13. https://doi.org/10.1016/B978-0-12-816196-8.00023-0.

Pleouras, D. S., Sakellarios, A. I., Tsompou, P., Kigka, V., Kyriakidis, S., & Rocchiccioli, S. et al. (2020). Simulation of atherosclerotic plaque growth using computational biomechanics and paient-specific data. Sci. Rep., 10: 17409. https://doi.org/10.1038/s41598-020-74583-y.

Pownall, H. J., Rosales, C., Gillard, B. K., & Gotto Jr, A. M. (2021). High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol., 18:712-723. https://doi.org/10.1038/s41569-021-00538-z.

Poznyak, A. V., Wu, W-K., Melnichennko, A. A., Wetzker, R., Sukhorukov, V., & Markin, A. M. et al. (2020). Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells, 9:584. https://doi.org/10.3390/cells9030584.

Radomska-Leśniewska, D. M., Balan, B. J., & Skopiński, P. (2017). Angiogenesis modulation by exogenous antioxidants. Cent. Eur. J. Immuno., 42:370-376. https://doi.org/10.5114/ceji.2017.72804.

Ravi, S., Duraisamy, P., Krishnan, M., Martin, L. C., Manikandan, B., & Raman, T. et al. (2021). An insight on 7-ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics. Steroids, 172:108854. https://doi.org/10.1016/j.steroids.2021.108854.

Raymond, J. L., & Couch, S. C. (2018). Dietoterapia para doença cardiovascular. In: Mahan, L., & Escott-Stump, S. Krause: alimentos, nutrição e dietoterapia. São Paulo: Elsevier, Capítulo 33, 2402-2517.

Rondanelli, M., Perdoni, F., Peroni, G., Caporali, R., Gasparri, C., & Riva, A. et al. (2021). Ideal food pyramid for patients with rheumatoid arthritis: A narrative review. Clin. Nutr., 40:661-689. https://doi.org/10.1016/j.clnu.2020.08.020.

Roth, G. A., Mensah, G. A., Jhonson, C. O., Addolorato, G., Ammirati, E., & Baddour, L. M. et al. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GDB 2019 study. J. Am. Coll. Cardiol., 76:2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010.

Ruiz-Léon, A. M., Lapuente, M., Estruch, R., & Casas, R. (2019). Clinical advances in immunonutrition and atherosclerosis: A review. Front. Immunol., 10:839. https://doi.org/10.3389/fimmu.2019.00837.

Sabatini, N., Perri, E., & Rongai, D. (2018). Olive oil antioxidants and aging. In book: Food quality: Balancing health and disease. Handbook of food bioengineering. Chapter 4, 145-157. https://doi.org/10.1016/B978-0-12-811442-1.00004-3.

Saini, R. K., & Keum, Y-S. (2018). Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci., 203:255-267. https://doi.org/10.1016/j.lfs.2018.04.049.

Sandesara, P. B., Virani, S. S., Fazio, S., & Shapiro, M. D. (2019). The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 40:537-557. https://doi.org/10.1210/er.2018-00184.

Santos, J. L., Quadros, A. S., Weschenfelder, C., Garofallo, S. B., & Marcadenti, A. (2020). Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients, 12:682. https://doi.org/10.3390/nu12030682.

Schober, A., Nazari-Jahantigh, M., & Wber, C. (2015). MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat. Rev. Cardiol., 12:361-374. https://doi.org/10.1038/nrcardio.2015.38.

Sethi, S., Gibney, M. J., & Williams, C. M. (1993). Postprandial lipoprotein metabolism. Nutr. Res. Rev., 6:161-183. https://doi.org/10.1079/NRR19930011.

Shah, B., & Thadani, U. (2019). Trans fatty acids linked to myocardial infarction and stroke: What is the evidence? Trends Cardiovasc. Med., 29:306-310. https://doi.org/10.1016/j.tcm.2018.09.011.

Shelness, G. S., & Sellers, J. A. (2001). Very-low-density lipoprotein assembly and secretion. Curr. Opin. Lipidol., 12:151-157. https://doi.org/10.1097/00041433-200104000-00008.

Shreenath, A. P., Hashmi, M. F., & Dooley, J. (2024). Selenium deficiency. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

Silva, R. A., Bersch-Ferreira, A. C., Gehringe, M. O., Ross-Fernandes, M. B., Amaral, C. K., & Wang, H-T. L. et al. (2021). Effect of qualitative and quantitative nutritional plan on gene expression in obese patients in secondary prevention for cardiovascular disease. Clin. Nutr. Espen., 41:351-359. https://doi.org/10.1016/j.clnesp.2020.11.002.

Simopoulos, A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother., 60:502-507. https://doi.org/10.1016/j.biopha.2006.07.080.

Skiadas, P. K., & Lascaratos, J. G. (2001). Dietetics in ancient Greek philosophy: Plato’s concepts of healthy diet. Eur. J. Clin. Nutr., 55:532-537. https://doi.org/10.1038/sj.ejcn.1601179.

Smith, C., Marks, A. D., & Lieberman, M. (2007). Absorção, síntese, metabolismo e destino do colesterol. In: Smith, C., Marks, A. D., & Lieberman, M. Bioquímica médica básica de Marks: Uma abordagem clínica. 2. Ed. Porto Alegre: Artmed, 34:619-653.

Smith, C., Marks, A. D., & Lieberman, M. (2007). Toxicidade do oxigênio e danos por radicais livres. In: Smith, C., Marks, A. D., & Lieberman, M. Bioquímica médica básica de Marks: Uma abordagem clínica. 2. Ed. Porto Alegre: Artmed, 24:439-457.

Soehnlein, O., & Libby, P. (2021). Targent inflamation in atherosclerosis - from experimental insights to the clinic. Nat. Rev. Drug. Discov., 20:589-610. https://doi.org/10.1038/s41573-021-00198-1.

Soppert, J., Lehrke, M., Marx, N., Jankowski, K., & Noels, H. (2020). Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug. Deliv. Rev., 159:4-33. https://doi.org/10.1016/j.addr.2020.07.019.

Soran, H., & Durrington, P. N. (2011). Susceptibility of LDL and its subfractions to glycation. Curr. Opin. Lipidol., 22:254-261. https://doi.org/10.1097/MOL.0b013e328348a43f.

Suzuki, T., & Swift, L. L. (2016). Discovery of novel splice variants and regulatory mechanisms for microsomal triglyceride transfer protein in human tissues. Sci. Rep., 6:27308. https://doi.org/10.1038/srep27308.

Tabas, I., & Lichtman, A. H. (2017). Monocyte-macrophages and T cells in atherosclerosis. Immunity, 47:621-634. https://doi.org/10.1016/j.immuni.2017.09.008.

Tajbakssh, A., Kovanen, P. T., Rezaee, M., Banach, M., Moallen, S. A., & Sahebkar, A. et al. (2020). Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis. Int. J. Biochem. Cell Biol., 120:105684. https://doi.org/10.1016/j.biocel.2020.105684.

Torres, N., Guevara-Cruz, M., Velásquez-Villegas, L. A., & Tovar, A. R. (2015). Nutrition and atherosclerosis. Arch. Med. Res., 46:408-426, https://doi.org/10.1016/j.arcmed.2015.05.010.

Tortosa-Caparrós, E., Navas-Carrillo, D., Marín, F., & Orenes-Piñero, E. (2017). Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit. Rev. Food Sci. Nutr., 57:3421-3429. https://doi.org/10.1080/10408398.2015.1126549.

Tsimikas, S., & Hall, J. L. (2012). Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J. Am. Coll. Cardiol., 60:716-721. https://doi.org/10.1016/j.jacc.2012.04.038.

Tvdá, E., & Benko, F. (2020). Free radicals: what they are and what they do. In book: Pathology. Chapter 1, 3-13. https://doi.org/10.1016/B978-0-12-815972-9.00001-9.

Uesugi, S., Ishihara, J., Isso, H., Sawada, N., Takachi, R., & Inoue, M. et al. (2017). Dietary intake of antioxidant vitamins and risk of stroke: the Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr., 71:1179-1185. https://doi.org/10.1038/ejcn.2017.71.

Valanti, E-K., Dalakoura-Karagkouni, K., Siasos, G., Kardassis, D., Eliopoulos, A. G., & Sanoudou, D. (2021). Advances in biological therapies for dyslipidemias and atherosclerosis. Metab. Clin. Exp., 116:154461. https://doi.org/10.1016/j.metabol.2020.154461.

Vallim, T., & Salter, A. M. (2010). Regulation of hepatic gene expression by saturated fatty acids. Prostaglandins, Leukot. Essent. Fatty Acids, 82:211-218. https://doi.org/10.1016/j.plefa.2010.02.016.

Vaziri, N. D. (2016). HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol., 12:37-47. https://doi.org/10.1038/nrneph.2015.180.

Wang, H., Airola, M. V., & Reue, K. (2017). How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochim. Biophys. Acta, Mol. Cell. Res., 1862:1131-1145. https://doi.org/10.1016/j.bbalip.2017.06.010.

Wang, L., Tao, L., Hao, L., Stanley, T. H., Huang, K-H., & Lambert, J. D. et al. (2020). A moderate-fat diet with one avocado per day increases plasma antioxidants and decreases the oxidation of small, dense LDL in adults with overweight and obesity: A randomized controlled trial. J. Nutri., 150:276-284. https://doi.org/10.1093/jn/nxz231.

Wolska, A., & Remaley, A. T. (2021). Lipoproteins. In book: Handbook of diagnostic endocrinology. Third Edition. Chapter 9, 287-308. https://doi.org/10.1016/B978-0-12-818277-2.00009-1.

Word Health Organization - WHO. (2021). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy III, J. M., & Smith, J. D. et al. (2007). The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol., 14:861-868. https://doi.org/10.1038/nsmb1284.

Xue, Q., He, N., Wang, Z., Fu, X., Aung, L. H. H., & Liu, Y. et al. (2021). Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J. Ginseng Res., 45:22-31. https://doi.org/10.1016/j.jgr.2020.07.002.

Yuan, P., Cui, S., Liu, Y., Li, J., Du, G., & Liu, L. (2020). Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl. Microbiol. Biotechnol., 104:935-951. doi: 10.1007/s00253-019-10157-x.

Yusuf, B., Mukovozov, I., Patel, S., Huang, Y-W., Liu, G. Y., & Reddy, E. C. et al. (2021). The neurorepellent, Slit2, prevents macrophage lipid loading by inhibiting CD36-dependent binding and internalization of oxidized low-density lipoprotein. Sci. Rep., 11:3614. https://doi.org/10.1038/s41598-021-83046-x.

Zekavast, S. M., Ruotsalainen, S., Handsaker R. E., Alver, M., Bloom, J., & Poterba, T. et al. (2018). Deep coverage whole genome sequences and plasma lipoprotein(a) in individuals of European and African ancestries. Nat. Commun., 9:2606. https://doi.org/10.1038/s41467-018-04668-w.

Downloads

Publicado

16/07/2024

Como Citar

RIBEIRO, M. G. C. .; ALMEIDA, M. E. F. de .; BARAKAT , B. .; PARUSSOLO, G. S. .; SANTANA, B. F. de .; VINHA, L. I. de L. . Aspectos bioquímicos e imunológicos da aterosclerose e seus fatores dietéticos contribuintes - Uma revisão narrativa. Research, Society and Development, [S. l.], v. 13, n. 7, p. e8713746239, 2024. DOI: 10.33448/rsd-v13i7.46239. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46239. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão