Plasticidade anatômica de acículas de Pinus taeda L. em sol e sombra na região serrana de Santa Catarina
DOI:
https://doi.org/10.33448/rsd-v13i7.46360Palavras-chave:
Anatomia de folha; Luminosidade; Variação estrutural.Resumo
O crescimento e desenvolvimento de coníferas estão relacionados à capacidade de fotossíntese e trocas gasosas em suas folhas (acículas) persistentes, bem como, relacionadas à disponibilidade de irradiância em longo prazo nos gradientes através do dossel. O objetivo da presente pesquisa foi descrever as variações morfofisiológicas e comparar a plasticidade fenotípica de folhas de Pinus taeda L. sob sol e sombra no cultivo na região serrana de Santa Catarina. Foram coletadas folhas de cinco plantas nas condições de sol e sombra. As análises histológicas de mensurações em folhas foram realizadas por microscopia de luz. Para cada característica morfométrica foi calculado o índice de plasticidade fenotípica. Em folhas de sol a espessura da epiderme na face adaxial foi menor, enquanto a área do cilindro central, a área do floema e dos ductos resiníferos foram maiores. O cilindro central apresentou o maior índice de plasticidade fenotípica (0,40), seguido da epiderme na face adaxial (0,28), do floema (0,27) e do ducto resinífero (0,25). Os menores índices de plasticidade foram registrados para o parênquima clorofilado na face adaxial (0,03) e para epiderme na face abaxial (0,03). Os resultados indicam que a luminosidade promove alterações estruturais em folhas de P. taeda relacionadas aos mecanismos de recepção da luz solar direta (face adaxial) e na condução de produtos de síntese pela planta (área do cilindro central, do floema e dos ductos resiníferos).
Referências
Alves, E. S. & Angyalossi-Alfonso, V. (2000). Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal, 21 (1), 3-30.
Amorim, M. W. & Melo Junior, J. C. F. (2017). Plasticidade morfoanatômica foliar de Tibouchina clavata (Melastomataceae) ocorrente em duas formações de restinga. Rodriguésia, 68 (2), 545-555. http://doi.org/10.1590/2175-7860201768217
Aragão, D. S., Lunz, A. M. P., Oliveira, L. C., Raposo, A., & Fermino Junior, P. C. P. (2014). Efeito do sombreamento na anatomia foliar de plantas jovens de andiroba (Carapa guianensis Aubl.). Revista Árvore, 38 (4), 631-639. https://doi.org/10.1590/S0100-67622014000400006
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society, 160, 268-282. https://doi.org/10.1098/rspa.1937.0109
Bastias, C. C., Valladares, F., Ricote, N., & Benavides, R. (2018). Local canopy diversity does not influence phenotypic expression and plasticity of tree seedlings exposed to different resource availabilities. Environmental and Experimental Botany, 156 (1), 38-47. https://doi.org/10.1016/j.envexpbot.2018.08.023
Bennett, J. J. R., Bera, B. K., Ferré, M., Yizhaq, H., Getzin, S., & Meron, E. (2023). Phenotypic plasticity: a missing elemento in the theory of vegetation pattern formation. PNAS, 120 (50), e2311528120. https://doi.org/10.1073/pnas.2311528120
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. In Advances in genetics. (E.M. Caspary & J.M. Thoday, eds.). Academic Press, New York. p.115-155.
Brodersen, C. R. & Vogelmann, T. C. (2007). Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany, 94 (7), 1061-1066.https://doi.org/10.3732/ajb.94.7.1061
Castro, E. M., Pinto, J. E. B. P., Soares, A. M., Melo, H. C., Bertolucci, S. K. V., Vieira, C. V., & Lima Junior, E. C. L. (2007). Adaptações anatômicas de folhas de Mikania glomerata Sprengel (Asteraceae), em três regiões distintas da planta, em diferentes níveis de sombreamento. Revista Brasileira de Plantas Medicinais, 9 (2), 8-16.
Chauhan, K., Sharma, K. R., Dutt, B., & Chauhan, R. (2022). Comparative anatomy of resin ducts in some western himalayan softwoods. Vegetos,35, 935–941.https://doi.org/10.1007/s42535-022-00375-6
Chin, A. R. O. & Sillett, S. C. (2016). Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer. American Journal of Botany, 103 (5), 796-807. https://doi.org/10.3732/ajb.1600110
Dardengo, J. F. E., Rossi, A. A. B., Silva, I. V., Pessoa, M. J. G., & Silva, C. J. (2017). Análise da influência luminosa nos aspectos anatômicos de folhas de Theobroma speciosum Willd ex Spreng. (Malvaceae). Ciência Florestal, 27 (3), 843-851. https://doi.org/10.5902/1980509828634
Delian, E., & Savulescu, E. Anatomical and physiological changes in needles of Pinus nigra J.F. Arnold reveal urban traffic air pollution driven effects (2022). Horticulture, 66 (1), 674-684.
Dörken, V. M. & Lepetit, B. (2018). Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Muller (Pinaceae, Coniferales): a combined approach. Plant, Cell & Environment, 41, 1683- 1697. http://doi.org/10.1111/pce.13213
Dörken, V. M. & Stützel, T. (2012). Morphology, anatomy and vasculature of leaves in Pinus (Pinaceae) and its evolutionary meaning. Flora, 207 (1), 57-62. https://doi.org/10.1016/j.flora.2011.10.004
Evans, J. R. & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24 (8), 755-767. https://doi.org/10.1046/j.1365-3040.2001.00724.x
Fermino Junior, P. C. P. & Fockink, G. D. (2017). Anatomia foliar de plantas jovens de erva-mate (Ilex paraguariensis A. St. Hill.) sob diferentes níveis de sombreamento. Scientia Agraria Paranaensis, 16 (3), 335-341.
Ferreira, D. F. Programa Sisvar.exe: sistema de análise de variância. Versão 3.04. Lavras: 2015.
Gebauer, R.; Cermák, J.; Plichta, R.; Spinlerová, Z.; Urban, J.; Volarik, D. & Ceulemans, R. (2015). Within-canopy variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees, 29 (5), 1447-1457. http://doi.org/10.1007/s00468-015-1224-1
Gernandt, D. S., Lopez, G. G., Garcia, S. O., & Liston, A. (2005). Phylogeny and classification of Pinus. Taxon, 54, 29–42. https://doi.org/10.2307/25065300
Ghimire, B., Lee, C., Yang, J., & Heo, K. (2015). Comparative leaf anatomy of native and cultivated Pinus (Pinaceae) in Korea: implications for the subgeneric classification. Plant Systematics and Evolution, 301, 531-540. http://doi.org/10.1007/s00606-014-1090-0
Guerra, A., Gonçalves, L. G., Santos, L. da S., & Medri, C. (2015). Morfoanatomia de folhas de sol e sombra de Handroanthus chrysotrichus (MART. EX DC.) Mattos (Bignoniaceae). Revista de Saúde e Biologia, 10(1), 59–71. http://68.183.29.147/revista/index.php/sabios/article/view/1656
Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 313 (1), 1-17. https://doi.org/10.1155/2014/208747
Hengxiao, G., McMillin; J. D., Wagner, M. R.; Zhou, J., Zhou, Z., & Xu, X. (1999). Altitudinal variation in foliar chemistry and anatomy of Yunnan Pine, Pinus yunnanensis, and pine sawfly (Hym. Diprionidae) performance. Journal of Applied Entomology, 123 (8), 465–471. https://doi.org/10.1046/j.1439-0418.1999.00395.x
Ibá - Indústria Brasileira de Árvores. Relatório anual IBÁ 2020. São Paulo: IBÁ, 2020. 66 p.
Ibge - Instituto Brasileiro de Geografia e Estatística. Produção da extração vegetal e da silvicultura 2019. Rio de Janeiro: IBGE, 2020. 74 p.
Javelle, M., Vernoud, V., Rogowsky, P. M., & Ingram, G. C. (2011). Epidermis: the formation and functions of a fundamental plant tissue. New Phytologist, 189 (1), 17-39. https://doi.org/10.1111/j.1469-8137.2010.03514.x
Johansen, D. A. (1940). Plant microtechnique. New York, McGraw Hill Book Company, Inc. 523p.
Kraus, J. E. & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR. 198p.
Moura, A. P. C., Gil, B. V., Perboni, A. T., Oliveira, L. F. R., Sant’Anna-Santos, B. F., & Danner, M. A. (2022). Morphophysiological adjustments to shade of jaboticaba tree saplings. Revista Ceres, 69 (4), 400-407. http://doi.org/10.1590/0034-737X20226904003
Niinemets, Ü., Portsmuth, A., & Tobias, M. (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171 (1), 91-104.
Oliveira, M. T., Souza, G. M., Pereira, S., Oliveira, D. A. S., Figueiredo-Lima, K. V., Arruda, E., & Santos, M. G. (2017). Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest. Tree Physiology, 37 (3), 326-337. https://doi.org/10.1093/treephys/tpw123
O’ Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59 (2), 368-373.
Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M., Clissold, F. J., Cornelissen, J. H., Diaz, S., & Dominy, N. J. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301 – 312. https://doi.org/10.1111/j.1461-0248.2010.01582.x
Pandolfo, C., Braga, H. J., Silva JR, V. P. da, Massignam, A. M., Pereira, E. S., Thomé, V. M. R., & Valci, F. V. (2002). Atlas climatológico do Estado de Santa Catarina. Florianópolis: Epagri. 13p.
Pearcy, R. W. (1990). Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 421–453. https://doi.org/10.1146/annurev.pp.41.060190.002225
Puglielli, G., Crescente, M. F., Frattaroli, A. R., & Gratani, L. (2015). Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions. Polish Journal of Ecology, 63 (1), 10-22. https://doi.org/10.3161/15052249PJE2015.63.1.002
Santos, R. C., & Carneiro, C. E. (2024). Comparative leaf anatomy under sun and shade conditions and pollen morphology of Chrysophyllum rufum Mart. (Sapotaceae). Anais da Academia Brasileira de Ciências, 96 (3), e20231007. http://doi.org/ 10.1590/0001-3765202420231007
Shapiro, S. S. & Wilk, K, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52 (3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591
Schoettle, A. W. & Rochelle, S. G. (2000). Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. American Journal of Botany, 87 (12), 1797–1806. https://doi.org/10.2307/2656832
Schopmeyer, C., Mergen, F., & Evans, T. C. (1954). Applicability of Poiseuille’s law to exudation of oleoresin from wounds on slash pine. Plant Physiology, 29 (1), 82-87. http://doi.org/10.1104/pp.29.1.82
Taiz, L. & Zeiger, E. (2004). Fisiologia vegetal. (3a ed.), Artmed, 245 p.
Telewski, F. W., Swanson, R. T., Strain, B. R., & Burns, J. M. (1999). Wood properties and ring width response to long-term atmospheric CO2 enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environment, 22, 213–219.https://doi.org/10.1046/j.1365-3040.1999.00392.x
Urban, O., Kosvancová, M., Marek, M. V., & Lichtenthaler, H. K. (2007). Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology, 27 (8), 1207-1215. https://doi.org/10.1093/treephys/27.8.1207
Valladares, F., Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology,94 (6), 1103-1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x
Valladares, F., Matesanz, S., Guilhaumon, F., Araujo, M. B., Balaguer, L., & Benito-Garzon, M. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351–1364. https://doi.org/10.1111/ele.12348
Vázquez-González, C., Zas, R., Erbilgin, N., Ferrenberg, S., Rozas, V., & Sampedro, L. (2020). Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology, 40 (10), 1313–26. https://doi.org/10.1093/treephys/tpaa064
Vogelmann, T. C., Bornman, J. F., & Yates, D.J. (1996). Focusing of light by leaf epidermal cells. Physiologia Plantarum, 98 (1), 43–56. https://doi.org/10.1111/j.1399-3054.1996.tb00674.x
Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., & Mickler, R. A. (2020). Estimation of Leaf Photosynthetic Capacity From Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation. JGR Biogeosciences, 125 (2), e2019JG005020. https://doi.org/10.1029/2019JG005020
Wyka, T. P., Oleksyn, J., Zytkowiak, R., karolewski, P., Jagodzinski, A. M., & Reich, P. B. (2012). Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia, 170, 11-24. http://doi.org/10.1007/s00442-012-2279-y
Yates, M. J., Verboom, G. A., Rebelo, A. G., & Cramer, M. D. (2010). Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24 (3), 485-492. https://doi.org/10.1111/j.1365-2435.2009.01678.x
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Heloyse Caetano Vargas; Ediane Santos Gonçalves; Magnos Alan Vivian ; Paulo Cesar Poeta Fermino Junior
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.