Produção e caracterização da amilase obtida de Rhizopus microsporus var. oligosporus

Autores

DOI:

https://doi.org/10.33448/rsd-v9i7.4810

Palavras-chave:

Biocatálise; Termoestabilidade; Metodologia de Superfície de Resposta.

Resumo

As amilases possuem a capacidade de catalisar a ligação α-1,4 do amido liberando glicose e dextrina, com destaque em diversos campos industriais. A pesquisa buscou caracterizar a enzima amilase obtida do fungo Rhizopus microsporus var. oligosporus, através da metodologia de Doehlert, avaliando o comportamento da enzima frente as variações de pH e temperatura. A produção da amilase ocorreu com a utilização do amido como indutor, e a caracterização foi realizada através da metodologia de superfície de resposta, com a análise do pH em 5 níveis (3,0, 4,0, 5,0, 6,0 e 7,0) e temperatura em 3 níveis (30, 50 e 70 °C).  A avaliação da termoestabilidade da amilase ocorreu à 60, 70 e 80ºC. A aplicação do modelo experimental indicou que a amilase obtida de R. microsporus var. oligosporus apresenta melhor desenvolvimento catalítico em temperaturas entre 40ºC e 55ºC e pH entre 2,5 e 3,2. A avaliação da termoestabilidade indicou que o aumento da temperatura influencia negativamente na atividade catalítica da amilase. O modelo experimental conduziu à compreensão das condições favoráveis à produção de amilases de R. microsporus var. oligosporus.

Referências

Abdulaal, W. H. (2018). Purification and characterization of α-amylase from Trichoderma pseudokoningii. BMC Biochemistry, 19(1), 4–9. https://doi.org/10.1186/s12858-018-0094-8

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Bussa, N. F., Moges, M., Muthuswamy, M., & Abdisa, M. (2019). Isolation and Characterization of Amylase Enzyme from Selected Fungal Strains of Wof Washa Forest of. Scientific Journal of Biology & Life Sciences, 1(2), 1–10.

Chang, Y.-H., Chang, K.-S., Chen, C.-Y., Hsu, C.-L., Chang, T.-C., & Jang, H.-D. (2018). Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation, 4(2), 45. https://doi.org/10.3390/fermentation4020045

Chapman, J., Ismail, A., & Dinu, C. (2018). Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts, 8(6), 238. https://doi.org/10.3390/catal8060238

Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443–1454. https://doi.org/10.1016/j.biotechadv.2015.02.014

Christopher, N., & Kumbalwar, M. (2015). Enzymes used in Food Industry A Systematic Review. International Journal of Inovative Research in Science Engineering and Technology, 4(10), 9830–9836. https://doi.org/10.15680/IJIRSET.2015.0410073

Kelleci, B. M., & Comlekcioglu, U. (2016). Production of amylolytic enzyme by rumen fungi, neocallimastix sp. K7 and orpinomyces sp. K5. Journal of Animal and Plant Sciences, 26(1), 242–252.

Miller, G. L. (1956). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426–428. https://doi.org/10.1021/ac60147a030

Porter, J. L., Rusli, R. A., & Ollis, D. L. (2016). Directed Evolution of Enzymes for Industrial Biocatalysis. ChemBioChem, 17(3), 197–203. https://doi.org/10.1002/cbic.201500280

Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., … Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

Simair, A. A., Qureshi, A. S., Khushk, I., Ali, C. H., Lashari, S., Bhutto, M. A., … Lu, C. (2017). Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. BioMed Research International, 2017. https://doi.org/10.1155/2017/9173040

Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 1–15. https://doi.org/10.1007/s13205-016-0485-8

Singh, S., & Bajaj, B. K. (2017). Potential application spectrum of microbial proteases for clean and green industrial production. Energy, Ecology and Environment, 2(6), 370–386. https://doi.org/10.1007/s40974-017-0076-5

Wang, S., Lin, C., Liu, Y., Shen, Z., Jeyaseelan, J., & Qin, W. (2016). Characterization of a starch-hydrolyzing α-amylase produced by aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment. International Journal of Biochemistry and Molecular Biology, 7(1), 1–10.

Xian, L., Wang, F., Luo, X., Feng, Y. L., & Feng, J. X. (2015). Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS ONE, 10(3), 1–18. https://doi.org/10.1371/journal.pone.0121531

Yan, S., Xiangsong, C., & Xiang, X. (2019). Improvement of the aroma of lily rice wine by using aroma-producing yeast strain Wickerhamomyces anomalus HN006. AMB Express, 9(1), 89. https://doi.org/10.1186/s13568-019-0811-8

Downloads

Publicado

04/06/2020

Como Citar

SANTOS, I. R.; MENDES, T. P. S.; MIRANDA, A. C. dos A.; COSTA, D. N.; FIGUEROA, G. M.; SOARES, V. D. M.; VALASQUES JUNIOR, G. L.; CEDRO, P. Évelin P. Produção e caracterização da amilase obtida de Rhizopus microsporus var. oligosporus. Research, Society and Development, [S. l.], v. 9, n. 7, p. e694974810, 2020. DOI: 10.33448/rsd-v9i7.4810. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4810. Acesso em: 24 dez. 2024.

Edição

Seção

Ciências Exatas e da Terra