Plantas Medicinais como Potenciais Inibidores do SARS-CoV-2: Uma revisão narrativa sobre propriedades antivirais e imunomoduladoras
DOI:
https://doi.org/10.33448/rsd-v14i2.48197Palavras-chave:
Antiviral; COVID-19; Citocina; Plantas medicinais; Compostos fitoquímicos; SARS-CoV-2.Resumo
A pandemia da doença do coronavírus de 2019 (COVID-19), causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2), destacou a necessidade urgente de estratégias terapêuticas eficazes. Embora medicamentos antivirais tenham sido desenvolvidos, o surgimento de variantes virais e as limitações dos tratamentos atuais reforçam a necessidade de explorar abordagens alternativas. As plantas medicinais, conhecidas por propriedades antioxidantes, anti-inflamatórias e antivirais, ganharam atenção como potenciais inibidores da replicação viral. Este artigo apresenta um estudo de revisão narrativa que procura examinar o potencial antiviral de extratos vegetais contra o SARS-CoV-2, focando em espécies-chave como Perilla frutescens, Punica granatum L., Nerium oleander, Scutellaria baicalensis e Vitis vinifera. Esses extratos demonstraram efeitos inibitórios promissores sobre mecanismos virais críticos, incluindo a replicação do RNA, a atividade de proteases (e.g., 3CLPro) e a entrada viral nas células hospedeiras. O estudo também discute os efeitos imunomoduladores desses compostos, especialmente na redução da inflamação associada à tempestade de citocinas, um dos principais fatores de gravidade da COVID-19. Além disso, alguns extratos vegetais, como Perilla frutescens, mostram efeitos sinérgicos quando combinados com antivirais convencionais, como o remdesivir. Apesar dos resultados promissores in vitro e in vivo, são necessários mais estudos pré-clínicos e clínicos para validar a eficácia e a segurança desses compostos naturais. Dada sua acessibilidade, segurança e propriedades antivirais de amplo espectro, os extratos de plantas medicinais representam um caminho valioso para o desenvolvimento de novas terapias contra a COVID-19 e outras infecções virais emergentes. Esta revisão reforça a necessidade de pesquisas contínuas sobre bioativos vegetais como potenciais candidatos para estratégias antivirais integrativas.
Referências
Ahmed, H. M. (2018). Ethnomedicinal, Phytochemical and Pharmacological Investigations of Perilla frutescens (L.) Britt. Molecules (Basel, Switzerland), 24(1), 102.
Akhtar, S., Ismail, T., Fraternale, D., & Sestili, P. (2015). Pomegranate peel and peel extracts: chemistry and food features. Food Chemistry, 174, 417–425.
Al-Jarallah, A., Igdoura, F., Zhang, Y., Tenedero, C. B., White, E. J., MacDonald, M. E., Igdoura, S. A., & Trigatti, B. L. (2013). The effect of pomegranate extract on coronary artery atherosclerosis in SR-BI/APOE double knockout mice. Atherosclerosis, 228(1), 80–89.
Amarelle, L., & Lecuona, E. (2018). The antiviral effects of Na,K-ATPase inhibition: A minireview. International Journal of Molecular Sciences, 19(8), 2154.
Ammar, N. M., Hassan, H. A., Ahmed, R. F., G El-Gendy, A. E.-N., Abd-ElGawad, A. M., Farrag, A. R. H., Farag, M. A., Elshamy, A. I., & Afifi, S. M. (2022). Gastro-protective effect of Artemisia sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 27(3), 247–257.
Ao, Z., Chan, M., Ouyang, M. J., Olukitibi, T. A., Mahmoudi, M., Kobasa, D., & Yao, X. (2021). Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry. PLoS ONE, 16(6), e0251649.
Asif, M. (2011). Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Oriental Pharmacy and Experimental Medicine, 11(1), 51–59.
Balkrishna, A., Solleti, S. K., Verma, S., & Varshney, A. (2020). Application of Humanized Zebrafish Model in the Suppression of SARS-CoV-2 Spike Protein Induced Pathology by Tri-Herbal Medicine Coronil via Cytokine Modulation. Molecules, 25(21), 5091.
Banihani, S., Swedan, S., & Alguraan, Z. (2013). Pomegranate and type 2 diabetes. Nutrition Research (New York, N.Y.), 33(5), 341–348.
Batiha, G. E.-S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., Algammal, A. M., & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods (Basel, Switzerland), 9(3), 374.
Benson, K. F., Newman, R. A., & Jensen, G. S. (2015). Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (nae-8(®)). Clinical, Cosmetic and Investigational Dermatology, 8, 239–248.
Boltaña, S., Rey, S., Roher, N., Vargas, R., Huerta, M., Huntingford, F. A., Goetz, F. W., Moore, J., Garcia-Valtanen, P., Estepa, A., & Mackenzie, S. (2013). Behavioural fever is a synergic signal amplifying the innate immune response. Proceedings. Biological Sciences, 280(1766), 20131381.
Chen, C.-N., Lin, C. P. C., Huang, K.-K., Chen, W.-C., Hsieh, H.-P., Liang, P.-H., & Hsu, J. T.-A. (2005). Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3’-digallate (TF3). Evidence-Based Complementary and Alternative Medicine: eCAM, 2(2), 209–215.
Chiej, R. (1984). Encyclopaedia of Medicinal Plants. TBS The Book Service.
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. (2015). In China Medical Science and Technology Press.
Conceicao, C., Thakur, N., Human, S., Kelly, J. T., Logan, L., Bialy, D., Bhat, S., Stevenson-Leggett, P., Zagrajek, A. K., Hollinghurst, P., Varga, M., Tsirigoti, C., Tully, M., Chiu, C., Moffat, K., Silesian, A. P., Hammond, J. A., Maier, H. J., Bickerton, E., … Bailey, D. (2020). The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biology, 18(12), e3001016.
Danesi, F., & Ferguson, L. (2017). Could pomegranate juice help in the control of inflammatory diseases? Nutrients, 9(9), 958.
De Clercq, E. (1987). Suramin in the treatment of AIDS: mechanism of action. Antiviral Research, 7(1), 1–10.
Ding, Y., Zeng, L., Li, R., Chen, Q., Zhou, B., Chen, Q., Cheng, P. L., Yutao, W., Zheng, J., Yang, Z., & Zhang, F. (2017). The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complementary and Alternative Medicine, 17(1), 130.
Duan, J., Zhan, J.-C., Wang, G.-Z., Zhao, X.-C., Huang, W.-D., & Zhou, G.-B. (2019). The red wine component ellagic acid induces autophagy and exhibits anti-lung cancer activity in vitro and in vivo. Journal of Cellular and Molecular Medicine, 23(1), 143–154.
Duan, Z.-P., Jia, Z.-H., Zhang, J., Liu, S., Chen, Y., Liang, L.-C., Zhang, C.-Q., Zhang, Z., Sun, Y., Zhang, S.-Q., Wang, Y.-Y., & Wu, Y.-L. (2011). Natural herbal medicine Lianhuaqingwen capsule anti-influenza A (H1N1) trial: a randomized, double blind, positive controlled clinical trial. Chinese Medical Journal, 124(18), 2925–2933.
Ducharme, N. A., Reif, D. M., Gustafsson, J.-A., & Bondesson, M. (2015). Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reproductive Toxicology (Elmsford, N.Y.), 55, 3–10.
Duke, J. A. (1985). Medicinal plants. Science (New York, N.Y.), 229(4718), 1036–1036.
European Pharmacopoeia. (Ed.). (2019). European Directorate for the Quality of Medicines of European Council.
Fisher, R. (1932). The English Names of Our Commonest Wild Flowers. T. Buncle & Company.
Fozzard, H. A., & Sheets, M. F. (1985). Cellular mechanism of action of cardiac glycosides. Journal of the American College of Cardiology, 5(5 Suppl A), 10A – 15A.
Fujita, K., Aoki, Y., & Suzuki, S. (2018). Antidiabetic effects of novel cell culture established from grapevine, Vitis vinifera cv. Koshu. Cytotechnology, 70(3), 993–999.
Godos, J., Caraci, F., Castellano, S., Currenti, W., Galvano, F., Ferri, R., & Grosso, G. (2020). Association between dietary flavonoids intake and cognitive function in an Italian cohort. Biomolecules, 10(9), 1300.
Grabež, M., Škrbić, R., Stojiljković, M. P., Rudić-Grujić, V., Paunović, M., Arsić, A., Petrović, S., Vučić, V., Mirjanić-Azarić, B., Šavikin, K., Menković, N., Janković, T., & Vasiljević, N. (2020). Beneficial effects of pomegranate peel extract on plasma lipid profile, fatty acids levels and blood pressure in patients with diabetes mellitus type-2: A randomized, double-blind, placebo-controlled study. Journal of Functional Foods, 64(103692), 103692.
Gray, S. F. (1821). Natural arrangement of British plants: According to their relations to each other, as pointed out by jussieu, DE Candolle, brown &c. : Including those cultivated for use with an introduction to botany, in which the terms newly introduced are explained. Baldwin, Cradock and Joy.
Guijarro-Real, C., Plazas, M., Prohens, J., & Vilanova, S. (2021). Potential In Vitro Inhibition of Selected Plant Extracts against SARS-CoV-2 Chymotrypsin-Like Protease (3CLPro) Activity. Foods, 10(7), 1503.
Han, J., Ye, M., Xu, M., Sun, J., Wang, B., & Guo, D. (2007). Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 848(2), 355–362.
Harcourt, J., Tamin, A., Lu, X., Kamili, S., Sakthivel, S. K., Murray, J., Queen, K., Tao, Y., Paden, C. R., Zhang, J., Li, Y., Uehara, A., Wang, H., Goldsmith, C., Bullock, H. A., Wang, L., Whitaker, B., Lynch, B., Gautam, R., … Thornburg, N. J. (2020). Severe acute respiratory syndrome Coronavirus 2 from patient with Coronavirus disease, United States. Emerging Infectious Diseases, 26(6), 1266–1273.
Hutchison, T., Yapindi, L., Malu, A., Newman, R. A., Sastry, K. J., & Harrod, R. (2019). The botanical glycoside oleandrin inhibits human T-cell leukemia virus type-1 infectivity and env-dependent virological synapse formation. Journal of Antivirals & Antiretrovirals, 11(3).
Kim, H. Y., Hong, M. H., Yoon, J. J., Kim, D. S., Na, S. W., Jang, Y. J., Lee, Y. J., Kang, D. G., & Lee, H. S. (2020). Protective effect of Vitis labrusca leaves extract on cardiovascular dysfunction through HMGB1-TLR4-NFκB signaling in spontaneously hypertensive rats. Nutrients, 12(10), 3096.
Kuo, S.-C., Wang, Y.-M., Ho, Y.-J., Chang, T.-Y., Lai, Z.-Z., Tsui, P.-Y., Wu, T.-Y., & Lin, C.-C. (2016). Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral Research, 134, 89–96.
Lee, J.-W., Kim, Y. I., Im, C.-N., Kim, S. W., Kim, S. J., Min, S., Joo, Y. H., Yim, S.-V., & Chung, N. (2017). Grape seed proanthocyanidin inhibits mucin synthesis and viral replication by suppression of AP-1 and NF-κB via p38 MAPKs/JNK signaling pathways in respiratory syncytial virus-infected A549 cells. Journal of Agricultural and Food Chemistry, 65(22), 4472–4483.
Li, L., Zhang, M., Zhang, S., Cui, Y., & Sun, B. (2018). Preparation and antioxidant activity of ethyl-linked anthocyanin-flavanol pigments from model wine solutions. Molecules (Basel, Switzerland), 23(5).
Li, R., Hou, Y., Huang, J., Pan, W., Ma, Q., Shi, Y., Li, C., Zhao, J., Jia, Z., Jiang, H., Zheng, K., Huang, S., Dai, J., Li, X., Hou, X., Wang, L., Zhong, N., & Yang, Z. (2020). Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 156, 104761.
Li, Z., Li, L., Zhou, H., Zeng, L., Chen, T., Chen, Q., Zhou, B., Wang, Y., Chen, Q., Hu, P., & Yang, Z. (2017). Radix isatidis polysaccharides inhibit influenza a virus and influenza A virus-induced inflammation via suppression of host TLR3 signaling in vitro. Molecules (Basel, Switzerland), 22(1), 116.
Lin, C.-W., Tsai, F.-J., Tsai, C.-H., Lai, C.-C., Wan, L., Ho, T.-Y., Hsieh, C.-C., & Chao, P.-D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68(1), 36–42.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules (Basel, Switzerland), 21(10), 1374.
Liu, H., Ye, F., Sun, Q., Liang, H., Li, C., Li, S., Lu, R., Huang, B., Tan, W., & Lai, L. (2021). Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 497–503.
Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience Trends, 14(1), 69–71.
Martins, N., Barros, L., & Ferreira, I. C. F. R. (2016). In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends in Food Science & Technology, 48, 1–12.
Moradi, M.-T., Karimi, A., Rafieian-Kopaei, M., Rabiei-Faradonbeh, M., & Momtaz, H. (2020). Pomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study. Avicenna Journal of Phytomedicine, 10(2), 143–151.
Moradi, M.-T., Karimi, A., Shahrani, M., Hashemi, L., & Ghaffari-Goosheh, M.-S. (2019). Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avicenna Journal of Medical Biotechnology, 11(4), 285–291.
Newman, R. A., Kondo, Y., Yokoyama, T., Dixon, S., Cartwright, C., Chan, D., Johansen, M., & Yang, P. (2007). Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integrative Cancer Therapies, 6(4), 354–364.
Newman, R. A., Sastry, K. J., Arav-Boger, R., Cai, H., Matos, R., & Harrod, R. (2020). Antiviral effects of oleandrin. Journal of Experimental Pharmacology, 12, 503–515.
Newman, R. A., Yang, P., Hittelman, W. N., Lu, T., Ho, D. H., Ni, D., Chan, D., Vijjeswarapu, M., Cartwright, C., Dixon, S., Felix, E., & Addington, C. (2006). Oleandrin-mediated oxidative stress in human melanoma cells. Journal of Experimental Therapeutics & Oncology, 5(3), 167–181.
Orgil, O., Schwartz, E., Baruch, L., Matityahu, I., Mahajna, J., & Amir, R. (2014). The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 58(2), 571–577.
Pan, Y., Rhea, P., Tan, L., Cartwright, C., Lee, H.-J., Ravoori, M. K., Addington, C., Gagea, M., Kundra, V., Kim, S.-J., Newman, R. A., & Yang, P. (2015). PBI-05204, a supercritical CO₂ extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway. Investigational New Drugs, 33(2), 271–279.
Pandey, A., & Bhatt, K. C. (2008). Diversity distribution and collection of genetic resources of cultivated and weedy type in Perilla frutescens (L.) Britton var. frutescens and their uses in Indian Himalaya. Genetic Resources and Crop Evolution, 55(6), 883–892.
Plante, K. S., Plante, J. A., Fernandez, D., Mirchandani, D., Bopp, N., Aguilar, P. V., Sastry, K. J., Newman, R. A., & Weaver, S. C. (2021). Antiviral activity of oleandrin and a defined extract of Nerium oleander against SARS-CoV-2. Biomedicine & Pharmacotherapy, 138, 111457.
Qiao, X., Li, R., Song, W., Miao, W.-J., Liu, J., Chen, H.-B., Guo, D.-A., & Ye, M. (2016). A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. Journal of Chromatography A, 1441, 83–95.
Rasool, R., Ganai, B. A., Akbar, S., Kamili, A. N., & Masood, A. (2010). Phytochemical screening of Prunella vulgaris l. - an important medicinal plant of Kashmir. Pakistan Journal of Pharmaceutical Sciences, 23(4), 399–402.
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20(2), v–vi. https://doi.org/10.1590/s0103-21002007000200001.
Sánchez, M. C., Ribeiro-Vidal, H., Esteban-Fernández, A., Bartolomé, B., Figuero, E., Moreno-Arribas, M. V., Sanz, M., & Herrera, D. (2019). Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC Complementary and Alternative Medicine, 19(1), 145.
Shin, J.-W., Seol, I.-C., & Son, C. (2010). Interpretation of animal dose and human equivalent dose for drug development. 31, 1–7.
Singh, M., Zannella, C., Folliero, V., Di Girolamo, R., Bajardi, F., Chianese, A., Altucci, L., Damasco, A., Del Sorbo, M. R., Imperatore, C., Rossi, M., Valadan, M., Varra, M., Vergara, A., Franci, G., Galdiero, M., & Altucci, C. (2020). Combating actions of green 2D-materials on gram positive and negative bacteria and enveloped viruses. Frontiers in Bioengineering and Biotechnology, 8, 569967.
Singh, S., Shenoy, S., Nehete, P. N., Yang, P., Nehete, B., Fontenot, D., Yang, G., Newman, R. A., & Sastry, K. J. (2013). Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia, 84, 32–39.
Sohrab, G., Roshan, H., Ebrahimof, S., Nikpayam, O., Sotoudeh, G., & Siasi, F. (2019). Effects of pomegranate juice consumption on blood pressure and lipid profile in patients with type 2 diabetes: A single-blind randomized clinical trial. Clinical Nutrition ESPEN, 29, 30–35.
Squillaci, G., Zannella, C., Carbone, V., Minasi, P., Folliero, V., Stelitano, D., Cara, F. L., Galdiero, M., Franci, G., & Morana, A. (2021). Grape canes from typical cultivars of Campania (Southern Italy) as a source of high-value bioactive compounds: Phenolic profile, antioxidant and antimicrobial activities. Molecules (Basel, Switzerland), 26(9), 2746.
Su, H.-X., Yao, S., Zhao, W.-F., Li, M.-J., Liu, J., Shang, W.-J., Xie, H., Ke, C.-Q., Hu, H.-C., Gao, M.-N., Yu, K.-Q., Liu, H., Shen, J.-S., Tang, W., Zhang, L.-K., Xiao, G.-F., Ni, L., Wang, D.-W., Zuo, J.-P., … Xu, Y.-C. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 41(9), 1167–1177.
Tabba, H. D., Chang, R. S., & Smith, K. M. (1989). Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antiviral Research, 11(5-6), 263–273.
Tang, W.-F., Tsai, H.-P., Chang, Y.-H., Chang, T.-Y., Hsieh, C.-F., Lin, C.-Y., Lin, G.-H., Chen, Y.-L., Jheng, J.-R., Liu, P.-C., Yang, C.-M., Chin, Y.-F., Chen, C. C., Kau, J.-H., Hung, Y.-J., & Horng, J.-T. (2021). Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomedical Journal, 44(3), 293–303.
Tito, A., Colantuono, A., Pirone, L., Pedone, E., Intartaglia, D., Giamundo, G., Conte, I., Vitaglione, P., & Apone, F. (2021). Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in vitro): A Promising Source of Novel Antiviral Drugs. Frontiers in Chemistry, 9, 638187.
Yu, H., Qiu, J.-F., Ma, L.-J., Hu, Y.-J., Li, P., & Wan, J.-B. (2017). Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 108(Pt B), 375–391.
Zannella, C., Giugliano, R., Chianese, A., Buonocore, C., Vitale, G. A., Sanna, G., Sarno, F., Manzin, A., Nebbioso, A., Termolino, P., Altucci, L., Galdiero, M., de Pascale, D., & Franci, G. (2021). Antiviral activity of Vitis vinifera leaf extract against SARS-CoV-2 and HSV-1. Viruses, 13(7), 1263.
Zhao, P., Praissman, J. L., Grant, O. C., Cai, Y., Xiao, T., Rosenbalm, K. E., Aoki, K., Kellman, B. P., Bridger, R., Barouch, D. H., Brindley, M. A., Lewis, N. E., Tiemeyer, M., Chen, B., Woods, R. J., & Wells, L. (2020). Virus-receptor interactions of glycosylated SARS-CoV-2 Spike and human ACE2 receptor. Cell Host & Microbe, 28(4), 586–601.e6.
Zhao, Q., Chen, X.-Y., & Martin, C. (2016). Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Science Bulletin, 61(18), 1391–1398.
Zheng M. (1990). Experimental study of 472 herbs with antiviral action against the herpes simplex virus. Zhong xi yi jie he za zhi [Chinese journal of modern developments in traditional medicine], 10(1), 39–41, 6.
Zhou, X.-J., Yan, L.-L., Yin, P.-P., Shi, L.-L., Zhang, J.-H., Liu, Y.-J., & Ma, C. (2014). Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. arguta seed flour. Food Chemistry, 164, 150–157.
Zhou, Y., Zheng, J., Li, Y., Xu, D.-P., Li, S., Chen, Y.-M., & Li, H.-B. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8), 515.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Murilo dos Santos Mancilha; Bruno Crepani; Erik Ernani Marques da Silva; Gabriela Oliveira do Nascimento; Jéssica Aparecida Souza Cuba; Kevin Gustavo dos Santos Silva; Marcia Claro de Andrade; Mônica Kristina Sampaio de Carvalho; Willian Santiago Fonseca Damasio; Jonatas Rafael de Oliveira

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.