Estresse térmico agudo promove alterações morfológicas e moleculares no coração de frangos de corte

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.5059

Palavras-chave:

Avicultura; Células cardíacas; Parâmetros bioquímicos.

Resumo

Este estudo teve como objetivo compreender os possíveis efeitos do estresse térmico agudo (32ºC, 12 horas) na temperatura corporal por meio de duas vias de medida (via sonda e retal), nos aspectos morfométricos do coração e da artéria aórtica, na expressão gênica (superóxido dismutase, glutationa peroxidase-3, óxido nítrico sintase induzida, enzima conversora de angiotensina e proteína de transferência de colesterol esterificado), nos parâmetros inflamatórios (mieloperoxidase e N-acetilglicosaminidase), parâmetros de estresse oxidativo  e níveis de nitrito em frangos de corte (Cobb 500) aos 42 dias de idade. Foram utilizados 36 frangos de corte com 42 dias de idade distribuídos em esquema fatorial 2x2: dois ambientes térmicos (conforto a 18ºC e estresse a 32ºC) e dois métodos de aferição da temperatura corporal (via probe e via retal). O estresse térmico desencadeou aumento na temperatura corporal independentemente da via de aferição. Houve efeito significativo na espessura da parede da artéria aorta e nos diâmetros látero lateral e ântero posterior (P<0,05). Da mesma forma, houve diferença nas dosagens de hidroperóxidos lipídicos, na quantificação das espécies reativas de oxigênio e na dosagem de nitrito (P<0,05). A quantificação do mRNA dos genes óxido nítrico sintase induzida, enzima conversora de angiotensina e proteína de transferência de colesterol esterificado foram significativamente maior nos animais submetidos ao estresse térmico. Assim, pode-se concluir que o estresse térmico agudo foi capaz de promover diversas alterações morfológicas e moleculares no coração e na artéria aorta de frangos de corte.

Biografia do Autor

Kariny Ferreira Moreira, Universidade Estadual de Maringá

Doutora em Zootenia; Produção Animal

Referências

Aebi, H. (1984). Catalase. Methods Enzymol, 105, 121–126.

Akbarian, A., Michiels, J., Degroote, J., Majdeddin, M., Golian, A. & Smet, S. (2016). Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of animal science and biotechnology, 37(7) 1-14. doi.org/ 10.1186/s40104-016-0097-5.

Alberghina, D., Piccione, G., Amorini, A.M., Lazzarino. G., Congiu, F., Lazzarino, G. & Tavazzi, B. (2015). Body temperature and plasma nitric oxide metabolites in response to standardized exercise test in the athletic horse. Journal of Equine Veterinary Science, 35, 709-713. doi.org/ 10.1016/j.jevs.2015.06.021.

Bailey, P. J. (1988). Sponge implants as models. In Methods in enzymology, 162, 327-334.

Bradley, P. P., Priebat, D. A., Christensen, R. D. & Rothstein, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, 78, 206–209.

Brandt, R. & Keston, A. S. (1965). Synthesis of diacetyldichlorofluorescin: a stable reagent for fluorometric analysis. Analytical biochemistry, 11, 6-9.

Crandall, C. G. & Wilson, T. E. (2015). Human cardiovascular responses to passive heat stress. Comprehensive Physiology, 5(1), 17-43. doi.org/10.1002/cphy.c140015.

De Young, L. M., Kheifets, J. B., Ballaron, S. J. & Young, J. M., (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and actions, 26, 335-341.

El-Tarabany, M. S. (2016). Effect of thermal stress on fertility and egg quality of Japanese quail. Journal of thermal biology, 61, 38-43. doi.org/10.1016/j.jtherbio.2016.08.004.

Farag, E., Maheshwari, K., Morgan, J., Esa, W.A.S. & Doyle, D.J. (2015). An update of the role of renin angiotensin in cardiovascular homeostasis. Anesthesia & Analgesia, 120(2), 275-292. doi.org/10.1213/ANE.0000000000000528.

Hayashi, H., Hess, D. T., Zhang, R., Sugi, K., Gao, H., Tan, B. L. & Stamler, J.S. (2018). S-nitrosylation of β-arrestins biases receptor signaling and confers ligand independence. Molecular cell, 70(3), 473-487. doi.org/10.1016/j.molcel.2018.03.034.

Jiang, Z. Y., Woollard, A. C. & Wolff, S. P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, 26, 853-856. doi.org/ 10.1007/BF02536169.

Li, X., Liu, X., Zhang, P., Feng, C., Sun, A., Kang, H. & Fan, Y. (2017). Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness. Journal of The Royal Society Interfac, 14, 20170140. doi.org/ 10.1098/rsif.2017.0140.

Liu, C. Y., Chen, D., Bluemke, D. A., Wu, C. O., Teixido-Tura, G., Chugh, A. & Hundley, W.G. (2015). Evolution of aortic wall thickness and stiffness with atherosclerosis: long-term follow up from the multi-ethnic study of atherosclerosis. Hypertension, 65, 1015-1019. doi.org/ 10.1161/HYPERTENSIONAHA.114.05080.

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry, 47, 469-474.

Martinelli, A. E. M., Maranhão, R. C., Carvalho, P. O., Freitas, F. R., Silva, B. M., Curiati, M. N., & Pereira-Barretto, A. C. (2018). Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure. Lipids in health and disease, 17(1), 242. doi.org/10.1186/s12944-018-0888-0.

Mascarenhas, N. M. H., Costa, A. N. L. D., Pereira, M. L. L., Caldas, A. C. A. D., Batista, L. F., & Andrade, E. L. G. (2018). Thermal conditioning in the broiler production: challenges and possibilities. Journal Animal Behavior Biometeorology, 6, 52-55. doi.org/10.26667/2318-1265jabb.v6n2p52-55.

McCafferty, D. J., Pandraud, G., Gilles, J., Fabra-Puchol, M. & Henry, P. Y. (2017). Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings. Bioinspiration & biomimetics, 13(1), 011001. doi: 10.1088/1748-3190/aa9a12.

Moretti, A. C., Zotti, M. L. A. N., Boiago, M. M., de Oliveira, P. A. V., & Zampar, A. (2020). Impact of acclimatization system on zootechnical performance and thermal comfort in young broiler chickens. Research, Society and Development, 9(7), 477974363. doi.org/10.33448/rsd-v9i7.4363

Rani, V., Deep, G., Singh, R.K., Palle, K. & Yadav, U.C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Journal of life sciences, 148, 183-193. doi.org/ 10.1016/j.lfs.2016.02.002.

Rodrigues, M. M., Garcia Neto, M., Perri, S. H. V., Sandre, D. G., Faria Jr, M. J. A., Oliveira, P. M. & Cassiano, R. P. (2019). Techniques to Minimize the Effects of Acute Heat Stress or Chronic in Broilers. Brazilian Journal of Poultry Science, 21(3). doi.org/10.1590/1806-9061-2018-0962.

Roushdy, E. M., Zaglool, A. W. & El-Tarabany, M. S. (2018). Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. Journal of thermal biology, 74, 337-343. doi:10.1016/j.jtherbio.2018.04.009.

Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. (2017). Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nature reviews cardiology, 14(3), 133. doi: 10.1038/nrcardio.2016.185.

Sahraei, M. (2014). Effects of feed restriction on metabolic disorders in broiler chickens: a review. Biotechnology in Animal Husbandry, 30, 1-13. doi.org/10.2298/BAH1401001S.

Sedlak, J. & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry, 25, 192-205.

Sellier, N., Guettier, E. & Staub, C. (2014). A review of methods to measure animal body temperature in precision farming. American Journal of Agricultural Science and Technology, 2, 74-99. doi.org/10.7726/ajast.2014.1008.

Statiscal Analyses System - SAS. SAS/STAT 2004: version 9.1 Cary: 2004.

Tickle, P. G., Paxton, H., Rankin, J. W., Hutchinson, J. R. & Codd, J. R. (2014). Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ, 2, e432. doi.org/10.7717/peerj.432.

Tiwari, V., Kuhad, A. & Chopra, K. (2011). Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido‐nitrosative stress mediated inflammatory cascade. Phytotherapy research, 25, 1527-1536. doi.org/10.1002/ptr.3440.

Tuleta, I., Bauriedel, G., Peuster, M., Andrié, R., Pabst, S., Nickenig, G. & Skowasch, D. (2011). FKBP12+ S100+ Dendritic Cells as Novel Cellular Targets for Rapamycin in Post Stent Neointima. J Clinic Experiment Cardiol, 2, 141. doi.org/10.1159/000110417.

Warholm, M., Guthenberg, C., Von Bahr, C. & Mannervik, B. (1985). Glutathione transferases from human liver. In Methods in enzymology, 113, 499-504.

Zaboli, G. R., Rahimi, S., Shariatmadari, F., Torshizi, M. A. K., Baghbanzadeh, A. & Mehri, M. (2016). Thermal manipulation during Pre and Post-Hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poultry science, 96, 478-485. doi.org/10.3382/ps/pew344.

Downloads

Publicado

24/06/2020

Como Citar

MOREIRA, K. F.; NEVES, C. Q.; BORGES, S. C.; VESCO, A. P. D.; SPEZIALI, M. I. B. R.; BUTTOW, N. C. .; BARBOSA, C. P.; GASPARINO, E. Estresse térmico agudo promove alterações morfológicas e moleculares no coração de frangos de corte. Research, Society and Development, [S. l.], v. 9, n. 8, p. e63985059, 2020. DOI: 10.33448/rsd-v9i8.5059. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5059. Acesso em: 27 set. 2024.

Edição

Seção

Ciências Agrárias e Biológicas