Detecção de poeira em painel solar usando técnicas de processamento de imagem: Uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.5107

Palavras-chave:

Processamento de imagem; Detecção de poeira; Painel Fotovoltaico.

Resumo

O desempenho de um painel fotovoltaico é afetado por sua orientação e inclinação angular com o plano horizontal. Isso ocorre porque esses dois parâmetros alteram a quantidade de energia solar recebida pela superfície do painel fotovoltaico. Existem também fatores ambientais que afetam a produção de energia, um exemplo é a poeira. Partículas de poeira acumuladas na superfície do painel reduzem a chegada de luz aos módulos solares, reduzindo a quantidade de energia gerada. A limpeza ou mitigação dos módulos é importante e, para otimizar esses processos, monitoramento e avaliação constantes devem ser realizados. Com o intuito de aumentar a eficiência de painéis fotovoltaicos, pode-se considerar a utilização de métodos de processamento de imagem para a detecção de poeira. Sendo assim, a criação de um documento que reúne e analisa os resultados de diferentes trabalhos desenvolvidos para solucionar esse problema facilita o acesso a informação, permitindo um melhor entendimento do que já foi feito e como pode ser melhorado. O objetivo desse artigo é fazer uma revisão sobre pesquisas que utilizam técnicas de processamento de imagens para detecção de poeira em painéis solares, a fim de compilar informações para auxiliar a pesquisa na área e proporcionar inspiração para futuros estudos.

Referências

Abuqaaud, K. A., & Ferrah, A. (2020). A Novel Technique for Detecting and Monitoring Dust and Soil on Solar Photovoltaic Panel. 2020 Advances in Science and Engineering Technology International Conferences (ASET). doi:10.1109/aset48392.2020.9118377.

Aghaei, M., Gandelli, A., Grimaccia, F., Leva, S., & Zich, R. (2015). IR real-time analyses for PV system monitoring by digital image processing techniques. In Event-based control, Communication, and Signal Processing (EBCCSP), 2015 International Conference on., [1–6]. https://doi.org/10.1109/EBCCSP.2015.7300708.

Albuquerque, M. P. de, & Albuquerque, M. P. de. (2000). Processamento de imagens: métodos e análises. Centro Brasileiro de Pesquisas Físicas. http://www.cbpf.br/cat/pdsi/pdf/ProcessamentoImagens.PDF.

Alnaser, N., Othman, M. A., Dakhel, A., Batarseh, I., Lee, J., Najmaii, S., Alothman, A., Shawaikh, H. A., & Alnaser, W. (2018). Comparison between performance of man-made and naturally cleaned PV panels in a middle of a desert. Renewable and Sustainable Energy Reviews, 82, 1048–1055. https://doi.org/10.1016/j.rser.2017.09.058.

Amir, A., Amir, A., Che, H. S., Elkhateb, A., & Rahim, N. A. (2019). Comparative analysis of high voltage gain dc-dc converter topologies for photovoltaic systems. Renewable Energy, 136, 1147 – 1163. https://doi.org/10.1016/j.renene.2018.09.089.

Amr, A. A. R., Hassan, A. A. M., Abdel-Salam, M., & El-Sayed, A. M. (2019). Enhancement of photovoltaic system performance via passive cooling: Theory versus experiment. Renewable Energy, 140, 88–103. https://doi.org/10.1016/j.renene.2019.03.048.

Cai, S., Bao, G., Ma, X., Wu, W., Bian, G.B., Rodrigues, J. J. P. C., & de Albuquerque, V.H.C. (2019). Parameters optimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experimente method. Journal of Cleaner Production, 217, 724–731. https://doi.org/10.1016/j.jclepro.2019.01.135.

Chen, J., Lin, C., & Liu, C. The Efficiency and Performance Detection Algorithm and System Development for Photovoltaic System through use of Thermal Image Processing Technology. (2018). In International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2017), [25-30]. https://doi.org/ 10.1063/1.5044158.

Dutta, S., Pal, S., Mukhopadhyay, S., & Sen, R. (2013) Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6 (3), p. 212–232. https://doi.org/10.1016/j.cirpj.2013.02.005.

Gao, X., Munson, E., Abousleman, G. P., & Si, J. (2015). Automatic solar panel recognition and defect detection using infrared imaging. In Automatic Target Recognition XXV (9476). [94760O] SPIE. https://doi.org/10.1117/12.2179792.

Gonzales, R., & Woods, R. (2007). Digital Image Processing. Pearson. Gosumbonggot, J. (2019). Global Maximum Power Point Tracking under Shading Condition and Hotspot Detection Algorithms for Photovoltaic Systems. Energies, 12 (882). https://doi.org/10.3390.

Guan, Y., Zhang, H., Xiao, B., Zhou, Z., & Yan, X. (2017). In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renewable Energy, 101, 1273–1284. https://doi.org/10.1016/j.renene.2016.10.009.

Hemza, A., Abdeslam, H., Rachid, C., & Aoun, N. (2019). Simplified methods for evaluating the degradation of photovoltaic module and modeling considering partial shading. Measurement, 138, 217 – 224. https://doi.org/10.1016/j.measurement.2019.01.098.

Jaszczur, M. (2019). The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency. Environmental Science and Pollution Research, 26 (9), 8402–8417. https://doi.org/10.1007/s11356-018-1970-x.

Jiang, Y., Lu, L., Ferro, A. R., & Ahmadi, G. (2018). Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Solar Energy, 159, 1031–1036. https://doi.org/10.1016/j.solener.2017.08.083.

Lee, S., An, K. E., Jeon, B. D., Cho, K. Y., Lee, S. J., & Seo, D. (2018). Detecting Faulty Solar Panels Based on Thermal Image Processing. In International Conference on Consumer Electronics (ICCE). https://doi.org/10.1109/ICCE.2018.8326228.

Ma, J., Jiang, H., Bi, Z., Huang, K., & Li, X. (2019). Maximum Power Point Estimation for Photovoltaic Strings Subjected to Partial Shading Scenarios. IEEE Transactions on Industry Applications, 55 (2), 1890–1902. https://doi.org/10.1109/TIA.2018.2882482.

Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. https://doi.org/10.1016/j.rser.2016.01.044.

Mehmood, U., Al-Sulaiman, F. A., & Yilbas, B. (2017). Characterization of dust collected from PV modules in the area of dhahran, kingdom of saudi arabia, and its impact on protective transparent covers for photovoltaic applications. Solar Energy, 141, 203–209. https://doi.org/10.1016/j.solener.2016.11.051.

Pawluk, R. E., Chen, Y., & She, Y. (2018). Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation. Renewable and Sustainable Energy Reviews, 107, 171–182, 2019. https://doi.org/10.1016/j.rser.2018.12.031.

Pereira AS et al (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Accessed on: June, 12th, 2020. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Phoolwani, U. K., Sharma, T., Singh, A., & Gawre, S. K. (2020). IoT Based Solar Panel Analysis using Thermal Imaging. 2020 IEEE International Students’ Conference on Electrical,Electronics and Computer Science (SCEECS). doi:10.1109/sceecs48394.2020.114.

Qasem, H., Mnatsakanyan, A., & Banda, P. (2016). Assessing dust on PV modules using image processing techniques. In 43rd Photovoltaic Specialists Conference (PVSC), [2066–2070]. https://doi.org/10.1109/PVSC.2016.7749993.

Ramos, E. Z., Ho, S., & Yfantis, E. A. (2016). Using spectral decomposition to detect dirty solar panels and minimize impact on energy production. Advances in Image and Video Processing, 3 (6). https://doi.org/10.14738/aivp.36.1710.

Ramos, E. Z., Ramos, M., Moutafis, K., & Yfantis, E. A. (2016). Robot-server architecture for optimizing solar panel power output. Transactions on Machine Learning and Artificial Intelligence, 4 (4). https://doi.org/10.14738/tmlai.44.2141.

Said, S. A., Hassan, G., Walwil, H. M., & Al-Aqeeli, N. (2018). The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renewable and Sustainable Energy Reviews, 82, 743–760. https://doi.org/10.1016/j.rser.2017.09.042.

Salas, V., Olias, E., Barrado, A., & Lazaro, A. (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar energy materials and solar cells, 90 (11), 1555–1578. https://doi.org/10.1016/j.solmat.2005.10.023.

Sarver, T., Al-Qaraghuli, A., & Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/j.rser.2012.12.065.

Sayyah, A., Horenstein, M. N., & Mazumder, M. K. (2014). Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy, 107, 576–604. https://doi.org/10.1016/j.solener.2014.05.030.

Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision. Cengage Learning (3. ed.).

Styszko, K., Jaszczur, M., Teneta, J., Hassan, Q., Burzy, P., & Marcinek, E. (2019). Analysis of the dust deposition on solar photovoltaic modules. Environmental Science and Pollution Research, 26 (9), 8393-8401. https://doi.org/10.1007/s11356-018-1847-z.

Tribak, H., & Zaz, Y. (2019). Dust Soiling Concentration Measurement on Solar Panels based on Image Entropy. 2019 7th International Renewable and Sustainable Energy Conference (IRSEC). doi:10.1109/irsec48032.2019.9078286.

Tsanakas, J., & Botsaris, P. (2012). An infrared thermographic approach as a hot-spot detection tool for photovoltaic modules using image histogram and line profile analysis. International Journal of Condition Monitoring, 2 (1), 22–30. https://doi.org/10.1784/204764212800028842.

Unluturk, M., Kulaksiz, A. A., & Unluturk, A. (2019). Image Processing-based Assessment of Dust Accumulation on Photovoltaic Modules. 2019 1st Global Power, Energy and Communication Conference (GPECOM). doi:10.1109/gpecom.2019.8778578.

Yao, Y. Y., & Hu, Y. (2017). Recognition and Location of Solar Panels Based on Machine Vision. In 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). [7–12]. https://doi.org/10.1109/ACIRS.2017.7986055.

Yap, W.K., Galet, R., & Yeo, K.C. (2015). Quantitative Analysis of Dust and Soiling on Solar PV Panels in the Tropics Utilizing Image-Processing Methods.In Asia Pacific Solar Research Conference. http://espace.cdu.edu.au/view/cdu:58767.

Yfantis, E., & Fayed, A. (2014). A camera system for detecting dust and other deposits on solar panels. Advances in Image and Video Processing, 2 (5). https://doi.org/10.14738/aivp.25.411.

Downloads

Publicado

06/07/2020

Como Citar

DANTAS, G. M.; MENDES, O. L. C.; MAIA, S. M.; DE ALEXANDRIA, A. R. Detecção de poeira em painel solar usando técnicas de processamento de imagem: Uma revisão. Research, Society and Development, [S. l.], v. 9, n. 8, p. e321985107, 2020. DOI: 10.33448/rsd-v9i8.5107. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5107. Acesso em: 25 nov. 2024.

Edição

Seção

Artigos de Revisão