Ajuste de modelos de fragilidade e riscos proporcionais aplicados a dados de retinopatia diabética
DOI:
https://doi.org/10.33448/rsd-v9i8.5691Palavras-chave:
Análise de sobrevivência; Modelo de cox; HeterogeneidadeResumo
Atualmente a análise de sobrevivência é uma das áreas que mais crescem no campo da análise estatística, com uma sólida teoria para ajustar modelos de regressão para estudar certos fenômenos, os quais têm, em sua estrutura, a característica de ter observações incompletas na amostra denominada censura. Embora esses modelos possam representar eficientemente o fenômeno em estudo em muitas situações, alguns deles não levam em consideração a existência de uma variável não observável presente na maioria dos estudos, denominada fragilidade. Essa fragilidade denota a suscetibilidade do evento a ocorrer por um indivíduo ou objeto determinado sob investigação. O objetivo deste trabalho foi mostrar que, em situações em que a fragilidade está presente, o uso de modelos que capturam a variabilidade dessa variável é mais viável para a análise desses dados quando comparado aos modelos convencionais em estudos de sobrevivência. Para tanto, foi realizada uma análise comparativa entre esses modelos, ajustada para um conjunto de dados de pacientes diagnosticados com retinopatia diabética, e também foi realizado um estudo de simulação para o modelo de fragilidade gama com diferentes porcentagens de censura e heterogeneidade. Após o ajuste dos modelos, observa-se que os modelos de fragilidade tiveram melhor desempenho quando comparados ao modelo de Cox, com ênfase no modelo de fragilidade gama, que gerou o menor valor para AIC e BIC. O estudo de simulação mostrou que altas taxas de censura prejudicam o grau de previsibilidade do modelo de fragilidade e que altas taxas de heterogeneidade contribuem para estimativas de parâmetros.
Referências
Borgan, Ø. (2000). Modeling survival data: extending the cox model. Terry M. Therneau and Patricia M. Grambsch.
Blair, A. L., Hadden, D. R., Weaver, J. A., Archer, D. B., Johnston, P. B., & Maguire, C. J. (1980). The 5-year prognosis for vision in diabetes. The Ulster medical journal, 49(2), 139.
Colosimo, E.A. & Giolo, S. (2006). Análise de sobrevivência aplicada. São Paulo: Editora Edgard Blücher.
Cox, D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202.
Duchateau, L., & Janssen, P. (2007). The frailty model. Springer Science & Business Media.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
Harrell Jr, Frank E (2019) rms: Regression Modeling Strategies, R package version 5.1-3.
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), 457-481.
Hess, K., & Gentleman, R. (2010). muhaz: Hazard function estimation in survival analysis. R package version, 1(5), 277.
Klein, J. P., & Moeschberger, M. L. (2006). Survival analysis: techniques for censored and truncated data. Springer Science & Business Media.
Krug, E. G. (2016). Trends in diabetes: sounding the alarm. The Lancet, 387(10027), 1485-1486.
Leasher, J. L., Bourne, R. R., Flaxman, S. R., Jonas, J. B., Keeffe, J., Naidoo, K., ... & Resnikoff, S. (2016). Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes care, 39(9), 1643-1649.
Monaco, J. V., Gorfine, M., & Hsu, L. (2018). General semiparametric shared frailty model: estimation and simulation with frailtySurv. Journal of statistical software, 86.
Moore, D. F. (2016). Applied survival analysis using R. Switzerland: Springer.
Pereira A.S. et al (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Accessed on: July, 23th, 2020.Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Peto, R., & Peto, J. (1972). Asymptotically efficient rank invariant test procedures. Journal of the Royal Statistical Society: Series A (General), 135(2), 185-198.
Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika, 65(1), 167-179.
Team, R. C. (2013). R: A language and environment for statistical computing.
Therneau, T. M. (2015). A Package for Survival Analysis in S; 2015. Version 2.38. URL: https://CRAN. R-project. org/package= survival.
Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439-454.
Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., ... & Haffner, S. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes care, 35(3), 556-564.
World Health Organization. (2016). Global report on diabetes: executive summary (No. WHO/NMH/NVI/16.3). World Health Organization.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.